Spaces:
Running
on
L4
Running
on
L4
Update app.py
Browse files
app.py
CHANGED
@@ -3,21 +3,26 @@ import os
|
|
3 |
|
4 |
import torch
|
5 |
from peft import PeftConfig, PeftModel
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
|
8 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
|
10 |
-
base_model_name = "google/gemma-2b"
|
11 |
-
|
12 |
-
#adapter_model_name = "samidh/cope-g2b-2c-hs
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
model = PeftModel.from_pretrained(model, adapter_model_name, token=os.environ['HF_TOKEN'])
|
22 |
model.merge_and_unload()
|
23 |
|
@@ -97,7 +102,7 @@ def predict(content, policy):
|
|
97 |
input_text = PROMPT.format(policy=policy, content=content)
|
98 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
99 |
|
100 |
-
with torch.
|
101 |
outputs = model(input_ids)
|
102 |
logits = outputs.logits[:, -1, :] # Get logits for the last token
|
103 |
predicted_token_id = torch.argmax(logits, dim=-1).item()
|
|
|
3 |
|
4 |
import torch
|
5 |
from peft import PeftConfig, PeftModel
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
7 |
|
8 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
|
10 |
+
#base_model_name = "google/gemma-2b"
|
11 |
+
base_model_name = "google/gemma-7b"
|
12 |
+
#adapter_model_name = "samidh/cope-g2b-2c-hs.s1.5fpc.9-sx.s1.5.9o-vl.s1.5.9-hr.s5-sh.s5.l5e5-e3-d25-r8"
|
13 |
+
adapter_model_name = "samidh/cope-g7bq-2c-hs.s1.5fpc.9-sx.s1.5.9o-VL.s1.5.9-HR.s5-SH.s5-l5e5-e3-d25-r8"
|
14 |
+
|
15 |
+
bnb_config = BitsAndBytesConfig(
|
16 |
+
load_in_4bit=True,
|
17 |
+
#bnb_4bit_quant_type="nf4",
|
18 |
+
#bnb_4bit_compute_dtype=torch.bfloat16,
|
19 |
+
#bnb_4bit_use_double_quant=True
|
20 |
+
)
|
21 |
+
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_name,
|
23 |
+
token=os.environ['HF_TOKEN'],
|
24 |
+
quantization_config=bnb_config,
|
25 |
+
device_map="auto")
|
26 |
model = PeftModel.from_pretrained(model, adapter_model_name, token=os.environ['HF_TOKEN'])
|
27 |
model.merge_and_unload()
|
28 |
|
|
|
102 |
input_text = PROMPT.format(policy=policy, content=content)
|
103 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
104 |
|
105 |
+
with torch.inference_mode():
|
106 |
outputs = model(input_ids)
|
107 |
logits = outputs.logits[:, -1, :] # Get logits for the last token
|
108 |
predicted_token_id = torch.argmax(logits, dim=-1).item()
|