Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,66 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain.chains import LLMChain
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
import torch,os
|
5 |
+
from langchain.llms import HuggingFacePipeline
|
6 |
+
from transformers import AutoTokenizer,AutoModelForCausalLM,pipeline,BitsAndBytesConfig
|
7 |
|
8 |
+
model_name_or_path = "meta-llama/Llama-2-13b-chat-hf"
|
9 |
+
|
10 |
+
# Count the number of GPUs available
|
11 |
+
gpu_count = torch.cuda.device_count()
|
12 |
+
|
13 |
+
# Determine the device to use based on GPU availability and count
|
14 |
+
# If more than one GPU is available, use 'auto' to allow the library to choose
|
15 |
+
# If only one GPU is available, use 'cuda:0' to specify the first GPU
|
16 |
+
# If no GPU is available, use the CPU
|
17 |
+
if torch.cuda.is_available() and gpu_count > 1:
|
18 |
+
device = 'auto'
|
19 |
+
elif torch.cuda.is_available():
|
20 |
+
device = 'cuda:0'
|
21 |
+
else:
|
22 |
+
device = 'cpu'
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
26 |
+
# quantization_config=bnb_config,
|
27 |
+
torch_dtype=torch.float16,
|
28 |
+
device_map='auto',)
|
29 |
+
print(model.hf_device_map)
|
30 |
+
|
31 |
+
pipe = pipeline(
|
32 |
+
"text-generation",
|
33 |
+
model=model,
|
34 |
+
tokenizer=tokenizer,
|
35 |
+
max_length=2500,
|
36 |
+
return_full_text=True,
|
37 |
+
do_sample=True,
|
38 |
+
repetition_penalty=1.15,
|
39 |
+
num_return_sequences=1,
|
40 |
+
pad_token_id=2,
|
41 |
+
model_kwargs={"temperature": 0.3,
|
42 |
+
"top_p":0.95,
|
43 |
+
"top_k":40,
|
44 |
+
"max_new_tokens":2500},
|
45 |
+
)
|
46 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
47 |
+
template = template = """Prompt: {query}
|
48 |
+
Answer: """
|
49 |
+
|
50 |
+
prompt_template = PromptTemplate(
|
51 |
+
input_variables=["query"],
|
52 |
+
template=template
|
53 |
+
)
|
54 |
+
#instantiate the chain
|
55 |
+
llm_chain = LLMChain(prompt=prompt_template, llm=llm)
|
56 |
+
|
57 |
+
st.title('Test Multi GPU')
|
58 |
+
|
59 |
+
md = st.text_area('Type in your markdown string (without outer quotes)')
|
60 |
+
|
61 |
+
st.button("Enter", type="primary")
|
62 |
+
if st.button("Say hello"):
|
63 |
+
resp=llm_chain.invoke(md)['text']
|
64 |
+
st.write(resp)
|
65 |
+
else:
|
66 |
+
st.write("Goodbye")
|