from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr checkpoint = "zeroMN/zeroSG" device = "cpu" # "cuda" or "cpu" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) def predict(message, history): history.append({"role": "user", "content": message}) input_text = tokenizer.apply_chat_template(history, tokenize=False) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=100, temperature=0.2, top_p=0.9, do_sample=True) decoded = tokenizer.decode(outputs[0]) response = decoded.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0] return response demo = gr.ChatInterface(predict, type="messages") demo.launch()