File size: 6,282 Bytes
9b867b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# app.py (on Hugging Face Spaces)
import gradio as gr
import httpx
import asyncio
import json

# Replace with your Modal API endpoint URL
MODAL_API_ENDPOINT = "https://blastingneurons--collective-hive-backend-orchestrate-hive-api.modal.run" 

# Helper function to format chat history for Gradio's 'messages' type
def format_chat_history_for_gradio(log_entries: list[dict]) -> list[dict]:
    formatted_messages = []
    for entry in log_entries:
        # Default to 'System' if agent name is not found
        role = entry.get("agent", "System") 
        content = entry.get("text", "")
        formatted_messages.append({"role": role, "content": content})
    return formatted_messages

async def call_modal_backend(problem_input: str, complexity: int):
    full_chat_history = []
    # Initial yield to clear previous state and show connecting message
    yield {
        "status": "Connecting to Hive...",
        "chat_history": [],
        "solution": "", "confidence": "", "minority_opinions": ""
    }

    try:
        async with httpx.AsyncClient(timeout=600.0) as client: # Longer timeout for the full process
            async with client.stream("POST", MODAL_API_ENDPOINT, json={"problem": problem_input, "complexity": complexity}) as response:
                response.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
                # We need to buffer chunks to ensure we parse complete JSON lines
                buffer = ""
                async for chunk in response.aiter_bytes():
                    buffer += chunk.decode('utf-8')
                    while "\n" in buffer:
                        line, buffer = buffer.split("\n", 1)
                        if not line.strip(): continue # Skip empty lines
                        try:
                            data = json.loads(line)
                            event_type = data.get("event")

                            if event_type == "status_update":
                                yield {
                                    "status": data["data"], 
                                    "chat_history": format_chat_history_for_gradio(full_chat_history)
                                }
                            elif event_type == "chat_update":
                                full_chat_history.append(data["data"])
                                yield {
                                    "status": "In Progress...", 
                                    "chat_history": format_chat_history_for_gradio(full_chat_history)
                                }
                            elif event_type == "final_solution":
                                yield {
                                    "status": "Solution Complete!",
                                    "chat_history": format_chat_history_for_gradio(full_chat_history + [{"agent": "System", "text": "Final solution synthesized."}]),
                                    "solution": data["solution"],
                                    "confidence": data["confidence"],
                                    "minority_opinions": data["minority_opinions"]
                                }
                                return # Done processing

                        except json.JSONDecodeError as e:
                            print(f"JSON Decode Error: {e} in line: {line}")
                            # This could happen if a partial JSON is received.
                            # The buffering logic should help, but if it's consistently failing, check Modal's streaming output.
                        except Exception as e:
                            print(f"Error processing event: {e}, Data: {data}")
                            yield {"status": f"Error: {e}", "chat_history": format_chat_history_for_gradio(full_chat_history)}
                            return

    except httpx.HTTPStatusError as e:
        error_message = f"HTTP Error: {e.response.status_code} - {e.response.text}"
        print(error_message)
        yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}
    except httpx.RequestError as e:
        error_message = f"Request Error: Could not connect to Modal backend: {e}"
        print(error_message)
        yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}
    except Exception as e:
        error_message = f"An unexpected error occurred: {e}"
        print(error_message)
        yield {"status": error_message, "chat_history": format_chat_history_for_gradio(full_chat_history)}

    yield {"status": "Process finished unexpectedly or ended.", "chat_history": format_chat_history_for_gradio(full_chat_history)}


with gr.Blocks() as demo:
    gr.Markdown("# Collective Intelligence Hive")
    gr.Markdown("Enter a problem and watch a hive of AI agents collaborate to solve it! Powered by Modal and Nebius.")

    with gr.Row():
        problem_input = gr.Textbox(label="Problem to Solve", lines=3, placeholder="e.g., 'Develop a marketing strategy for a new eco-friendly smart home device targeting millennials.'", scale=3)
        complexity_slider = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Problem Complexity", scale=1)
        
    initiate_btn = gr.Button("Initiate Hive", variant="primary")

    status_output = gr.Textbox(label="Hive Status", interactive=False)
    
    with gr.Row():
        with gr.Column(scale=2):
            chat_display = gr.Chatbot(
                label="Agent Discussion Log",
                height=500,
                type='messages',
                autoscroll=True
            )
            
        with gr.Column(scale=1):
            solution_output = gr.Textbox(label="Synthesized Solution", lines=10, interactive=False)
            confidence_output = gr.Textbox(label="Solution Confidence", interactive=False)
            minority_output = gr.Textbox(label="Minority Opinions", lines=3, interactive=False)

    initiate_btn.click(
        call_modal_backend,
        inputs=[problem_input, complexity_slider],
        outputs=[
            status_output,
            chat_display,
            solution_output,
            confidence_output,
            minority_output
        ],
        queue=True
    )

demo.launch()