File size: 2,099 Bytes
2cdceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb8007
01f9a93
 
 
 
 
 
2cdceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
"""

from typing import Any
from typing import Callable
from typing import ParamSpec
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
import spaces
import torch
from torch.utils._pytree import tree_map


P = ParamSpec('P')


TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length')
TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length')

TRANSFORMER_DYNAMIC_SHAPES = {
    'hidden_states': {
        1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
    },
    'encoder_hidden_states': {
        1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
    },
    'encoder_hidden_states_mask': {
        1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
    },
    'image_rotary_emb': ({
        0: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
    }, {
        0: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
    }),
}


INDUCTOR_CONFIGS = {
    'conv_1x1_as_mm': True,
    'epilogue_fusion': False,
    'coordinate_descent_tuning': True,
    'coordinate_descent_check_all_directions': True,
    'max_autotune': True,
    'triton.cudagraphs': True,
}


def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):

    @spaces.GPU(duration=1500)
    def compile_transformer():

        pipeline.load_lora_weights(
        "lightx2v/Qwen-Image-Lightning", 
        weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
        )
        pipeline.fuse_lora()
        pipeline.unload_lora_weights()

        with spaces.aoti_capture(pipeline.transformer) as call:
            pipeline(*args, **kwargs)

        dynamic_shapes = tree_map(lambda t: None, call.kwargs)
        dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES

        # quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
        
        exported = torch.export.export(
            mod=pipeline.transformer,
            args=call.args,
            kwargs=call.kwargs,
            dynamic_shapes=dynamic_shapes,
        )

        return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)

    spaces.aoti_apply(compile_transformer(), pipeline.transformer)