Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import math | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import QwenImageLoraLoaderMixin | |
from diffusers.models import AutoencoderKLQwenImage, QwenImageTransformer2DModel | |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from PIL import Image | |
>>> from diffusers import QwenImageEditPipeline | |
>>> from diffusers.utils import load_image | |
>>> pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=torch.bfloat16) | |
>>> pipe.to("cuda") | |
>>> image = load_image( | |
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png" | |
... ).convert("RGB") | |
>>> prompt = ( | |
... "Make Pikachu hold a sign that says 'Qwen Edit is awesome', yarn art style, detailed, vibrant colors" | |
... ) | |
>>> # Depending on the variant being used, the pipeline call will slightly vary. | |
>>> # Refer to the pipeline documentation for more details. | |
>>> image = pipe(image, prompt, num_inference_steps=50).images[0] | |
>>> image.save("qwenimage_edit.png") | |
``` | |
""" | |
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift | |
def calculate_shift( | |
image_seq_len, | |
base_seq_len: int = 256, | |
max_seq_len: int = 4096, | |
base_shift: float = 0.5, | |
max_shift: float = 1.15, | |
): | |
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
b = base_shift - m * base_seq_len | |
mu = image_seq_len * m + b | |
return mu | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
r""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
def calculate_dimensions(target_area, ratio): | |
width = math.sqrt(target_area * ratio) | |
height = width / ratio | |
width = round(width / 32) * 32 | |
height = round(height / 32) * 32 | |
return width, height, None | |
class QwenImageEditPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin): | |
r""" | |
The Qwen-Image-Edit pipeline for image editing. | |
Args: | |
transformer ([`QwenImageTransformer2DModel`]): | |
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`Qwen2.5-VL-7B-Instruct`]): | |
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the | |
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant. | |
tokenizer (`QwenTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
""" | |
model_cpu_offload_seq = "text_encoder->transformer->vae" | |
_callback_tensor_inputs = ["latents", "prompt_embeds"] | |
def __init__( | |
self, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
vae: AutoencoderKLQwenImage, | |
text_encoder: Qwen2_5_VLForConditionalGeneration, | |
tokenizer: Qwen2Tokenizer, | |
processor: Qwen2VLProcessor, | |
transformer: QwenImageTransformer2DModel, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
processor=processor, | |
transformer=transformer, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8 | |
self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16 | |
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible | |
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
self.vl_processor = processor | |
self.tokenizer_max_length = 1024 | |
self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n" | |
self.prompt_template_encode_start_idx = 64 | |
self.default_sample_size = 128 | |
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden | |
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor): | |
bool_mask = mask.bool() | |
valid_lengths = bool_mask.sum(dim=1) | |
selected = hidden_states[bool_mask] | |
split_result = torch.split(selected, valid_lengths.tolist(), dim=0) | |
return split_result | |
def _get_qwen_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: Optional[torch.Tensor] = None, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
): | |
device = device or self._execution_device | |
dtype = dtype or self.text_encoder.dtype | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
template = self.prompt_template_encode | |
drop_idx = self.prompt_template_encode_start_idx | |
txt = [template.format(e) for e in prompt] | |
model_inputs = self.processor( | |
text=txt, | |
images=image, | |
padding=True, | |
return_tensors="pt", | |
).to(device) | |
outputs = self.text_encoder( | |
input_ids=model_inputs.input_ids, | |
attention_mask=model_inputs.attention_mask, | |
pixel_values=model_inputs.pixel_values, | |
image_grid_thw=model_inputs.image_grid_thw, | |
output_hidden_states=True, | |
) | |
hidden_states = outputs.hidden_states[-1] | |
split_hidden_states = self._extract_masked_hidden(hidden_states, model_inputs.attention_mask) | |
split_hidden_states = [e[drop_idx:] for e in split_hidden_states] | |
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states] | |
max_seq_len = max([e.size(0) for e in split_hidden_states]) | |
prompt_embeds = torch.stack( | |
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states] | |
) | |
encoder_attention_mask = torch.stack( | |
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list] | |
) | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
return prompt_embeds, encoder_attention_mask | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
image: Optional[torch.Tensor] = None, | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_embeds_mask: Optional[torch.Tensor] = None, | |
max_sequence_length: int = 1024, | |
): | |
r""" | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
image (`torch.Tensor`, *optional*): | |
image to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
""" | |
device = device or self._execution_device | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, image, device) | |
_, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len) | |
return prompt_embeds, prompt_embeds_mask | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
prompt_embeds_mask=None, | |
negative_prompt_embeds_mask=None, | |
callback_on_step_end_tensor_inputs=None, | |
max_sequence_length=None, | |
): | |
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
logger.warning( | |
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and prompt_embeds_mask is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`." | |
) | |
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None: | |
raise ValueError( | |
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
) | |
if max_sequence_length is not None and max_sequence_length > 1024: | |
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}") | |
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents | |
def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
latents = latents.permute(0, 2, 4, 1, 3, 5) | |
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
return latents | |
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents | |
def _unpack_latents(latents, height, width, vae_scale_factor): | |
batch_size, num_patches, channels = latents.shape | |
# VAE applies 8x compression on images but we must also account for packing which requires | |
# latent height and width to be divisible by 2. | |
height = 2 * (int(height) // (vae_scale_factor * 2)) | |
width = 2 * (int(width) // (vae_scale_factor * 2)) | |
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) | |
latents = latents.permute(0, 3, 1, 4, 2, 5) | |
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width) | |
return latents | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax") | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax") | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean) | |
.view(1, self.latent_channels, 1, 1, 1) | |
.to(image_latents.device, image_latents.dtype) | |
) | |
latents_std = ( | |
torch.tensor(self.vae.config.latents_std) | |
.view(1, self.latent_channels, 1, 1, 1) | |
.to(image_latents.device, image_latents.dtype) | |
) | |
image_latents = (image_latents - latents_mean) / latents_std | |
return image_latents | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.vae.enable_tiling() | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
def prepare_latents( | |
self, | |
image, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
# VAE applies 8x compression on images but we must also account for packing which requires | |
# latent height and width to be divisible by 2. | |
height = 2 * (int(height) // (self.vae_scale_factor * 2)) | |
width = 2 * (int(width) // (self.vae_scale_factor * 2)) | |
shape = (batch_size, 1, num_channels_latents, height, width) | |
image_latents = None | |
if image is not None: | |
image = image.to(device=device, dtype=dtype) | |
if image.shape[1] != self.latent_channels: | |
image_latents = self._encode_vae_image(image=image, generator=generator) | |
else: | |
image_latents = image | |
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
# expand init_latents for batch_size | |
additional_image_per_prompt = batch_size // image_latents.shape[0] | |
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
image_latents = torch.cat([image_latents], dim=0) | |
image_latent_height, image_latent_width = image_latents.shape[3:] | |
image_latents = self._pack_latents( | |
image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
else: | |
latents = latents.to(device=device, dtype=dtype) | |
return latents, image_latents | |
def guidance_scale(self): | |
return self._guidance_scale | |
def attention_kwargs(self): | |
return self._attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
def current_timestep(self): | |
return self._current_timestep | |
def interrupt(self): | |
return self._interrupt | |
def __call__( | |
self, | |
image: Optional[PipelineImageInput] = None, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: Union[str, List[str]] = None, | |
true_cfg_scale: float = 4.0, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
sigmas: Optional[List[float]] = None, | |
guidance_scale: float = 1.0, | |
num_images_per_prompt: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_embeds_mask: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds_mask: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is | |
not greater than `1`). | |
true_cfg_scale (`float`, *optional*, defaults to 1.0): | |
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
guidance_scale (`float`, *optional*, defaults to 3.5): | |
Guidance scale as defined in [Classifier-Free Diffusion | |
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. | |
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to | |
the text `prompt`, usually at the expense of lower image quality. | |
This parameter in the pipeline is there to support future guidance-distilled models when they come up. | |
Note that passing `guidance_scale` to the pipeline is ineffective. To enable classifier-free guidance, | |
please pass `true_cfg_scale` and `negative_prompt` (even an empty negative prompt like " ") should | |
enable classifier-free guidance computations. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will be generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple. | |
attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`: | |
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is a list with the generated images. | |
""" | |
image_size = image[0].size if isinstance(image, list) else image.size | |
calculated_width, calculated_height, _ = calculate_dimensions(1024 * 1024, image_size[0] / image_size[1]) | |
height = height or calculated_height | |
width = width or calculated_width | |
multiple_of = self.vae_scale_factor * 2 | |
width = width // multiple_of * multiple_of | |
height = height // multiple_of * multiple_of | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
prompt_embeds_mask=prompt_embeds_mask, | |
negative_prompt_embeds_mask=negative_prompt_embeds_mask, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._attention_kwargs = attention_kwargs | |
self._current_timestep = None | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Preprocess image | |
if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels): | |
image = self.image_processor.resize(image, calculated_height, calculated_width) | |
prompt_image = image | |
image = self.image_processor.preprocess(image, calculated_height, calculated_width) | |
image = image.unsqueeze(2) | |
has_neg_prompt = negative_prompt is not None or ( | |
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None | |
) | |
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
prompt_embeds, prompt_embeds_mask = self.encode_prompt( | |
image=prompt_image, | |
prompt=prompt, | |
prompt_embeds=prompt_embeds, | |
prompt_embeds_mask=prompt_embeds_mask, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
) | |
if do_true_cfg: | |
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt( | |
image=prompt_image, | |
prompt=negative_prompt, | |
prompt_embeds=negative_prompt_embeds, | |
prompt_embeds_mask=negative_prompt_embeds_mask, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
) | |
# 4. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
latents, image_latents = self.prepare_latents( | |
image, | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
img_shapes = [ | |
[ | |
(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2), | |
(1, calculated_height // self.vae_scale_factor // 2, calculated_width // self.vae_scale_factor // 2), | |
] | |
] * batch_size | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
image_seq_len = latents.shape[1] | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.get("base_image_seq_len", 256), | |
self.scheduler.config.get("max_image_seq_len", 4096), | |
self.scheduler.config.get("base_shift", 0.5), | |
self.scheduler.config.get("max_shift", 1.15), | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
sigmas=sigmas, | |
mu=mu, | |
) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# handle guidance | |
if self.transformer.config.guidance_embeds: | |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
guidance = guidance.expand(latents.shape[0]) | |
else: | |
guidance = None | |
if self.attention_kwargs is None: | |
self._attention_kwargs = {} | |
txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None | |
negative_txt_seq_lens = ( | |
negative_prompt_embeds_mask.sum(dim=1).tolist() if negative_prompt_embeds_mask is not None else None | |
) | |
image_rotary_emb = self.transformer.pos_embed(img_shapes, txt_seq_lens, device=latents.device) | |
# 6. Denoising loop | |
self.scheduler.set_begin_index(0) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
self._current_timestep = t | |
latent_model_input = latents | |
if image_latents is not None: | |
latent_model_input = torch.cat([latents, image_latents], dim=1) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
with self.transformer.cache_context("cond"): | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
encoder_hidden_states_mask=prompt_embeds_mask, | |
encoder_hidden_states=prompt_embeds, | |
image_rotary_emb=image_rotary_emb, | |
attention_kwargs=self.attention_kwargs, | |
return_dict=False, | |
)[0] | |
noise_pred = noise_pred[:, : latents.size(1)] | |
if do_true_cfg: | |
with self.transformer.cache_context("uncond"): | |
neg_noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
encoder_hidden_states_mask=negative_prompt_embeds_mask, | |
encoder_hidden_states=negative_prompt_embeds, | |
image_rotary_emb=image_rotary_emb, | |
attention_kwargs=self.attention_kwargs, | |
return_dict=False, | |
)[0] | |
neg_noise_pred = neg_noise_pred[:, : latents.size(1)] | |
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True) | |
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True) | |
noise_pred = comb_pred * (cond_norm / noise_norm) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
self._current_timestep = None | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = latents.to(self.vae.dtype) | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean) | |
.view(1, self.vae.config.z_dim, 1, 1, 1) | |
.to(latents.device, latents.dtype) | |
) | |
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
latents.device, latents.dtype | |
) | |
latents = latents / latents_std + latents_mean | |
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return QwenImagePipelineOutput(images=image) | |