linoyts HF Staff commited on
Commit
71cdab1
·
verified ·
1 Parent(s): fcc6b32

- add fa3 (266eb5a02c8421c73fa55f63a587af01afab4f27)
- Rename qwen_fa3_processor.py to qwenimage/qwen_fa3_processor.py (016c48eb74c5eac17f6907a51ce358a92174df7d)
- Update qwenimage/transformer_qwenimage.py (7c51c1fd8483d5736f5452f79f09ab7ddfc006d1)
- Update requirements.txt (a212e7e53526ad93d5e7ddb76c9296e19ab7681d)
- Update app.py (100c7ec026eaef2be06ac1983dfcd570a90a87c9)

app.py CHANGED
@@ -14,6 +14,7 @@ import math
14
  from optimization import optimize_pipeline_
15
  from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
16
  from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
 
17
 
18
  import base64
19
  from io import BytesIO
@@ -236,6 +237,7 @@ scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
236
 
237
  pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler,torch_dtype=dtype).to(device)
238
  pipe.transformer.__class__ = QwenImageTransformer2DModel
 
239
 
240
  # --- Ahead-of-time compilation ---
241
  optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
 
14
  from optimization import optimize_pipeline_
15
  from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
16
  from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
17
+ from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
18
 
19
  import base64
20
  from io import BytesIO
 
237
 
238
  pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler,torch_dtype=dtype).to(device)
239
  pipe.transformer.__class__ = QwenImageTransformer2DModel
240
+ pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
241
 
242
  # --- Ahead-of-time compilation ---
243
  optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
qwenimage/qwen_fa3_processor.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Paired with a good language model. Thanks!
3
+ """
4
+
5
+ import torch
6
+ from typing import Optional, Tuple
7
+ from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen
8
+
9
+ try:
10
+ from kernels import get_kernel
11
+ _k = get_kernel("kernels-community/vllm-flash-attn3")
12
+ _flash_attn_func = _k.flash_attn_func
13
+ except Exception as e:
14
+ _flash_attn_func = None
15
+ _kernels_err = e
16
+
17
+
18
+ def _ensure_fa3_available():
19
+ if _flash_attn_func is None:
20
+ raise ImportError(
21
+ "FlashAttention-3 via Hugging Face `kernels` is required. "
22
+ "Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n"
23
+ f"{_kernels_err}"
24
+ )
25
+
26
+ @torch.library.custom_op("flash::flash_attn_func", mutates_args=())
27
+ def flash_attn_func(
28
+ q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False
29
+ ) -> torch.Tensor:
30
+ outputs, lse = _flash_attn_func(q, k, v, causal=causal)
31
+ return outputs
32
+
33
+ @flash_attn_func.register_fake
34
+ def _(q, k, v, **kwargs):
35
+ # two outputs:
36
+ # 1. output: (batch, seq_len, num_heads, head_dim)
37
+ # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
38
+ meta_q = torch.empty_like(q).contiguous()
39
+ return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)
40
+
41
+
42
+ class QwenDoubleStreamAttnProcessorFA3:
43
+ """
44
+ FA3-based attention processor for Qwen double-stream architecture.
45
+ Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3
46
+ accessed via Hugging Face `kernels`.
47
+
48
+ Notes / limitations:
49
+ - General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask.
50
+ - Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features.
51
+ - Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor).
52
+ """
53
+
54
+ _attention_backend = "fa3" # for parity with your other processors, not used internally
55
+
56
+ def __init__(self):
57
+ _ensure_fa3_available()
58
+
59
+ @torch.no_grad()
60
+ def __call__(
61
+ self,
62
+ attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads
63
+ hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream
64
+ encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream
65
+ encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path
66
+ attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path
67
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs)
68
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
69
+ if encoder_hidden_states is None:
70
+ raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).")
71
+ if attention_mask is not None:
72
+ # FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues.
73
+ raise NotImplementedError("attention_mask is not supported in this FA3 implementation.")
74
+
75
+ _ensure_fa3_available()
76
+
77
+ B, S_img, _ = hidden_states.shape
78
+ S_txt = encoder_hidden_states.shape[1]
79
+
80
+ # ---- QKV projections (image/sample stream) ----
81
+ img_q = attn.to_q(hidden_states) # (B, S_img, D)
82
+ img_k = attn.to_k(hidden_states)
83
+ img_v = attn.to_v(hidden_states)
84
+
85
+ # ---- QKV projections (text/context stream) ----
86
+ txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D)
87
+ txt_k = attn.add_k_proj(encoder_hidden_states)
88
+ txt_v = attn.add_v_proj(encoder_hidden_states)
89
+
90
+ # ---- Reshape to (B, S, H, D_h) ----
91
+ H = attn.heads
92
+ img_q = img_q.unflatten(-1, (H, -1))
93
+ img_k = img_k.unflatten(-1, (H, -1))
94
+ img_v = img_v.unflatten(-1, (H, -1))
95
+
96
+ txt_q = txt_q.unflatten(-1, (H, -1))
97
+ txt_k = txt_k.unflatten(-1, (H, -1))
98
+ txt_v = txt_v.unflatten(-1, (H, -1))
99
+
100
+ # ---- Q/K normalization (per your module contract) ----
101
+ if getattr(attn, "norm_q", None) is not None:
102
+ img_q = attn.norm_q(img_q)
103
+ if getattr(attn, "norm_k", None) is not None:
104
+ img_k = attn.norm_k(img_k)
105
+ if getattr(attn, "norm_added_q", None) is not None:
106
+ txt_q = attn.norm_added_q(txt_q)
107
+ if getattr(attn, "norm_added_k", None) is not None:
108
+ txt_k = attn.norm_added_k(txt_k)
109
+
110
+ # ---- RoPE (Qwen variant) ----
111
+ if image_rotary_emb is not None:
112
+ img_freqs, txt_freqs = image_rotary_emb
113
+ # expects tensors shaped (B, S, H, D_h)
114
+ img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False)
115
+ img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False)
116
+ txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False)
117
+ txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False)
118
+
119
+ # ---- Joint attention over [text, image] along sequence axis ----
120
+ # Shapes: (B, S_total, H, D_h)
121
+ q = torch.cat([txt_q, img_q], dim=1)
122
+ k = torch.cat([txt_k, img_k], dim=1)
123
+ v = torch.cat([txt_v, img_v], dim=1)
124
+
125
+ # FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse)
126
+ out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h)
127
+
128
+ # ---- Back to (B, S, D_model) ----
129
+ out = out.flatten(2, 3).to(q.dtype)
130
+
131
+ # Split back to text / image segments
132
+ txt_attn_out = out[:, :S_txt, :]
133
+ img_attn_out = out[:, S_txt:, :]
134
+
135
+ # ---- Output projections ----
136
+ img_attn_out = attn.to_out[0](img_attn_out)
137
+ if len(attn.to_out) > 1:
138
+ img_attn_out = attn.to_out[1](img_attn_out) # dropout if present
139
+
140
+ txt_attn_out = attn.to_add_out(txt_attn_out)
141
+
142
+ return img_attn_out, txt_attn_out
qwenimage/transformer_qwenimage.py CHANGED
@@ -24,7 +24,7 @@ from diffusers.configuration_utils import ConfigMixin, register_to_config
24
  from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
25
  from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
26
  from diffusers.utils.torch_utils import maybe_allow_in_graph
27
- from diffusers.models.attention import FeedForward
28
  from diffusers.models.attention_dispatch import dispatch_attention_fn
29
  from diffusers.models.attention_processor import Attention
30
  from diffusers.models.cache_utils import CacheMixin
@@ -469,7 +469,7 @@ class QwenImageTransformerBlock(nn.Module):
469
  return encoder_hidden_states, hidden_states
470
 
471
 
472
- class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
473
  """
474
  The Transformer model introduced in Qwen.
475
 
 
24
  from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
25
  from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
26
  from diffusers.utils.torch_utils import maybe_allow_in_graph
27
+ from diffusers.models.attention import FeedForward, AttentionMixin
28
  from diffusers.models.attention_dispatch import dispatch_attention_fn
29
  from diffusers.models.attention_processor import Attention
30
  from diffusers.models.cache_utils import CacheMixin
 
469
  return encoder_hidden_states, hidden_states
470
 
471
 
472
+ class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin):
473
  """
474
  The Transformer model introduced in Qwen.
475
 
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
  git+https://github.com/huggingface/diffusers.git@qwenimage-lru-cache-bypass
2
-
3
  torchao==0.11.0
4
  transformers
5
  accelerate
 
1
  git+https://github.com/huggingface/diffusers.git@qwenimage-lru-cache-bypass
2
+ kernels
3
  torchao==0.11.0
4
  transformers
5
  accelerate