Spaces:
Running
on
Zero
Running
on
Zero
add fa3 (#1)
Browse files- add fa3 (266eb5a02c8421c73fa55f63a587af01afab4f27)
- Rename qwen_fa3_processor.py to qwenimage/qwen_fa3_processor.py (016c48eb74c5eac17f6907a51ce358a92174df7d)
- Update qwenimage/transformer_qwenimage.py (7c51c1fd8483d5736f5452f79f09ab7ddfc006d1)
- Update requirements.txt (a212e7e53526ad93d5e7ddb76c9296e19ab7681d)
- Update app.py (100c7ec026eaef2be06ac1983dfcd570a90a87c9)
- app.py +2 -0
- qwenimage/qwen_fa3_processor.py +142 -0
- qwenimage/transformer_qwenimage.py +2 -2
- requirements.txt +1 -1
app.py
CHANGED
@@ -14,6 +14,7 @@ import math
|
|
14 |
from optimization import optimize_pipeline_
|
15 |
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
|
16 |
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
|
|
17 |
|
18 |
import base64
|
19 |
from io import BytesIO
|
@@ -236,6 +237,7 @@ scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
|
236 |
|
237 |
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler,torch_dtype=dtype).to(device)
|
238 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
|
|
239 |
|
240 |
# --- Ahead-of-time compilation ---
|
241 |
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
|
|
|
14 |
from optimization import optimize_pipeline_
|
15 |
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
|
16 |
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
17 |
+
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
18 |
|
19 |
import base64
|
20 |
from io import BytesIO
|
|
|
237 |
|
238 |
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler,torch_dtype=dtype).to(device)
|
239 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
240 |
+
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
241 |
|
242 |
# --- Ahead-of-time compilation ---
|
243 |
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
|
qwenimage/qwen_fa3_processor.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Paired with a good language model. Thanks!
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen
|
8 |
+
|
9 |
+
try:
|
10 |
+
from kernels import get_kernel
|
11 |
+
_k = get_kernel("kernels-community/vllm-flash-attn3")
|
12 |
+
_flash_attn_func = _k.flash_attn_func
|
13 |
+
except Exception as e:
|
14 |
+
_flash_attn_func = None
|
15 |
+
_kernels_err = e
|
16 |
+
|
17 |
+
|
18 |
+
def _ensure_fa3_available():
|
19 |
+
if _flash_attn_func is None:
|
20 |
+
raise ImportError(
|
21 |
+
"FlashAttention-3 via Hugging Face `kernels` is required. "
|
22 |
+
"Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n"
|
23 |
+
f"{_kernels_err}"
|
24 |
+
)
|
25 |
+
|
26 |
+
@torch.library.custom_op("flash::flash_attn_func", mutates_args=())
|
27 |
+
def flash_attn_func(
|
28 |
+
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False
|
29 |
+
) -> torch.Tensor:
|
30 |
+
outputs, lse = _flash_attn_func(q, k, v, causal=causal)
|
31 |
+
return outputs
|
32 |
+
|
33 |
+
@flash_attn_func.register_fake
|
34 |
+
def _(q, k, v, **kwargs):
|
35 |
+
# two outputs:
|
36 |
+
# 1. output: (batch, seq_len, num_heads, head_dim)
|
37 |
+
# 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
|
38 |
+
meta_q = torch.empty_like(q).contiguous()
|
39 |
+
return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)
|
40 |
+
|
41 |
+
|
42 |
+
class QwenDoubleStreamAttnProcessorFA3:
|
43 |
+
"""
|
44 |
+
FA3-based attention processor for Qwen double-stream architecture.
|
45 |
+
Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3
|
46 |
+
accessed via Hugging Face `kernels`.
|
47 |
+
|
48 |
+
Notes / limitations:
|
49 |
+
- General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask.
|
50 |
+
- Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features.
|
51 |
+
- Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor).
|
52 |
+
"""
|
53 |
+
|
54 |
+
_attention_backend = "fa3" # for parity with your other processors, not used internally
|
55 |
+
|
56 |
+
def __init__(self):
|
57 |
+
_ensure_fa3_available()
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def __call__(
|
61 |
+
self,
|
62 |
+
attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads
|
63 |
+
hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream
|
64 |
+
encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream
|
65 |
+
encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path
|
66 |
+
attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path
|
67 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs)
|
68 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
69 |
+
if encoder_hidden_states is None:
|
70 |
+
raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).")
|
71 |
+
if attention_mask is not None:
|
72 |
+
# FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues.
|
73 |
+
raise NotImplementedError("attention_mask is not supported in this FA3 implementation.")
|
74 |
+
|
75 |
+
_ensure_fa3_available()
|
76 |
+
|
77 |
+
B, S_img, _ = hidden_states.shape
|
78 |
+
S_txt = encoder_hidden_states.shape[1]
|
79 |
+
|
80 |
+
# ---- QKV projections (image/sample stream) ----
|
81 |
+
img_q = attn.to_q(hidden_states) # (B, S_img, D)
|
82 |
+
img_k = attn.to_k(hidden_states)
|
83 |
+
img_v = attn.to_v(hidden_states)
|
84 |
+
|
85 |
+
# ---- QKV projections (text/context stream) ----
|
86 |
+
txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D)
|
87 |
+
txt_k = attn.add_k_proj(encoder_hidden_states)
|
88 |
+
txt_v = attn.add_v_proj(encoder_hidden_states)
|
89 |
+
|
90 |
+
# ---- Reshape to (B, S, H, D_h) ----
|
91 |
+
H = attn.heads
|
92 |
+
img_q = img_q.unflatten(-1, (H, -1))
|
93 |
+
img_k = img_k.unflatten(-1, (H, -1))
|
94 |
+
img_v = img_v.unflatten(-1, (H, -1))
|
95 |
+
|
96 |
+
txt_q = txt_q.unflatten(-1, (H, -1))
|
97 |
+
txt_k = txt_k.unflatten(-1, (H, -1))
|
98 |
+
txt_v = txt_v.unflatten(-1, (H, -1))
|
99 |
+
|
100 |
+
# ---- Q/K normalization (per your module contract) ----
|
101 |
+
if getattr(attn, "norm_q", None) is not None:
|
102 |
+
img_q = attn.norm_q(img_q)
|
103 |
+
if getattr(attn, "norm_k", None) is not None:
|
104 |
+
img_k = attn.norm_k(img_k)
|
105 |
+
if getattr(attn, "norm_added_q", None) is not None:
|
106 |
+
txt_q = attn.norm_added_q(txt_q)
|
107 |
+
if getattr(attn, "norm_added_k", None) is not None:
|
108 |
+
txt_k = attn.norm_added_k(txt_k)
|
109 |
+
|
110 |
+
# ---- RoPE (Qwen variant) ----
|
111 |
+
if image_rotary_emb is not None:
|
112 |
+
img_freqs, txt_freqs = image_rotary_emb
|
113 |
+
# expects tensors shaped (B, S, H, D_h)
|
114 |
+
img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False)
|
115 |
+
img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False)
|
116 |
+
txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False)
|
117 |
+
txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False)
|
118 |
+
|
119 |
+
# ---- Joint attention over [text, image] along sequence axis ----
|
120 |
+
# Shapes: (B, S_total, H, D_h)
|
121 |
+
q = torch.cat([txt_q, img_q], dim=1)
|
122 |
+
k = torch.cat([txt_k, img_k], dim=1)
|
123 |
+
v = torch.cat([txt_v, img_v], dim=1)
|
124 |
+
|
125 |
+
# FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse)
|
126 |
+
out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h)
|
127 |
+
|
128 |
+
# ---- Back to (B, S, D_model) ----
|
129 |
+
out = out.flatten(2, 3).to(q.dtype)
|
130 |
+
|
131 |
+
# Split back to text / image segments
|
132 |
+
txt_attn_out = out[:, :S_txt, :]
|
133 |
+
img_attn_out = out[:, S_txt:, :]
|
134 |
+
|
135 |
+
# ---- Output projections ----
|
136 |
+
img_attn_out = attn.to_out[0](img_attn_out)
|
137 |
+
if len(attn.to_out) > 1:
|
138 |
+
img_attn_out = attn.to_out[1](img_attn_out) # dropout if present
|
139 |
+
|
140 |
+
txt_attn_out = attn.to_add_out(txt_attn_out)
|
141 |
+
|
142 |
+
return img_attn_out, txt_attn_out
|
qwenimage/transformer_qwenimage.py
CHANGED
@@ -24,7 +24,7 @@ from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
24 |
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
25 |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
26 |
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
27 |
-
from diffusers.models.attention import FeedForward
|
28 |
from diffusers.models.attention_dispatch import dispatch_attention_fn
|
29 |
from diffusers.models.attention_processor import Attention
|
30 |
from diffusers.models.cache_utils import CacheMixin
|
@@ -469,7 +469,7 @@ class QwenImageTransformerBlock(nn.Module):
|
|
469 |
return encoder_hidden_states, hidden_states
|
470 |
|
471 |
|
472 |
-
class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
473 |
"""
|
474 |
The Transformer model introduced in Qwen.
|
475 |
|
|
|
24 |
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
25 |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
26 |
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
27 |
+
from diffusers.models.attention import FeedForward, AttentionMixin
|
28 |
from diffusers.models.attention_dispatch import dispatch_attention_fn
|
29 |
from diffusers.models.attention_processor import Attention
|
30 |
from diffusers.models.cache_utils import CacheMixin
|
|
|
469 |
return encoder_hidden_states, hidden_states
|
470 |
|
471 |
|
472 |
+
class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin):
|
473 |
"""
|
474 |
The Transformer model introduced in Qwen.
|
475 |
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
git+https://github.com/huggingface/diffusers.git@qwenimage-lru-cache-bypass
|
2 |
-
|
3 |
torchao==0.11.0
|
4 |
transformers
|
5 |
accelerate
|
|
|
1 |
git+https://github.com/huggingface/diffusers.git@qwenimage-lru-cache-bypass
|
2 |
+
kernels
|
3 |
torchao==0.11.0
|
4 |
transformers
|
5 |
accelerate
|