import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("thviet79/model-QA-medical") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Here, call the Hugging Face Inference API with the messages and other parameters response = client.text_generation( model="thviet79/model-QA-medical", inputs=messages, parameters={"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p}, ) return response["generated_text"] # Extract the model's response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], type='messages' # This makes it use the OpenAI-style structure ) if __name__ == "__main__": demo.launch(share = True)