import gradio as gr from llama_cpp import Llama #from transformers import AutoModelForCausalLM # Load the model llm = Llama.from_pretrained( repo_id = "uonlp/Vistral-7B-Chat-gguf", filename="ggml-vistral-7B-chat-f16.gguf" # Define the function to interact with the model def chat_with_model(user_input): response = llm.generate( messages=[ {"role": "user", "content": user_input} ] ) return response['choices'][0]['message']['content'] # Create the Gradio interface iface = gr.Interface( fn=chat_with_model, inputs="text", outputs="text", title="QA-medical Chatbot", description="Ask the model any medical question !" ) # Launch the interface if __name__ == "__main__": iface.launch()