Spaces:
Runtime error
Runtime error
File size: 8,534 Bytes
8b0ae10 d754e91 87a0e23 329aa8d fd15ecb d754e91 9c78439 d754e91 40a8f4e d754e91 570c043 d754e91 8b0ae10 90c428d 40a8f4e 90c428d 79d936d 87a0e23 a1771a7 9c78439 8b0ae10 90c428d 49b832f d754e91 9c78439 40a8f4e d754e91 90c428d a1771a7 9c78439 40a8f4e d754e91 9c78439 d754e91 9c78439 40a8f4e d754e91 9c78439 03b5741 9c78439 40a8f4e d754e91 49b832f 90c428d 40a8f4e 90c428d 966795b 79d936d 90c428d 4b2400e fd15ecb 03b5741 40a8f4e 03b5741 fd15ecb 03b5741 40a8f4e 03b5741 fd15ecb 90c428d d754e91 90c428d d754e91 90c428d a1771a7 40a8f4e 87a0e23 79d936d 90c428d 61dd8eb 03b5741 40a8f4e 61dd8eb 90c428d 03b5741 329aa8d 42c2f04 329aa8d 03b5741 329aa8d 90c428d 8b0ae10 90c428d d754e91 90c428d d754e91 a1771a7 d754e91 90c428d d754e91 90c428d d754e91 87a0e23 fd15ecb 03b5741 fd15ecb 90c428d 40a8f4e 90c428d 7b14813 87a0e23 40a8f4e 03b5741 a1771a7 9279c83 211c86c 9279c83 87a0e23 90c428d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import importlib
import os
import sys
import gc
import json
import re
from transformers import (
AutoModelForCausalLM, AutoModel,
AutoTokenizer, LlamaTokenizer
)
from .config import Config
from .globals import Global
from .lib.get_device import get_device
def get_torch():
return importlib.import_module('torch')
def get_peft_model_class():
return importlib.import_module('peft').PeftModel
def get_new_base_model(base_model_name):
if Config.ui_dev_mode:
return
if Global.is_train_starting or Global.is_training:
raise Exception("Cannot load new base model while training.")
if Global.new_base_model_that_is_ready_to_be_used:
if Global.name_of_new_base_model_that_is_ready_to_be_used == base_model_name:
model = Global.new_base_model_that_is_ready_to_be_used
Global.new_base_model_that_is_ready_to_be_used = None
Global.name_of_new_base_model_that_is_ready_to_be_used = None
return model
else:
Global.new_base_model_that_is_ready_to_be_used = None
Global.name_of_new_base_model_that_is_ready_to_be_used = None
clear_cache()
model_class = AutoModelForCausalLM
from_tf = False
force_download = False
has_tried_force_download = False
while True:
try:
model = _get_model_from_pretrained(
model_class, base_model_name, from_tf=from_tf, force_download=force_download)
break
except Exception as e:
if 'from_tf' in str(e):
print(
f"Got error while loading model {base_model_name} with AutoModelForCausalLM: {e}.")
print("Retrying with from_tf=True...")
from_tf = True
force_download = False
elif model_class == AutoModelForCausalLM:
print(
f"Got error while loading model {base_model_name} with AutoModelForCausalLM: {e}.")
print("Retrying with AutoModel...")
model_class = AutoModel
force_download = False
else:
if has_tried_force_download:
raise e
print(
f"Got error while loading model {base_model_name}: {e}.")
print("Retrying with force_download=True...")
model_class = AutoModelForCausalLM
from_tf = False
force_download = True
has_tried_force_download = True
tokenizer = get_tokenizer(base_model_name)
if re.match("[^/]+/llama", base_model_name):
model.config.pad_token_id = tokenizer.pad_token_id = 0
model.config.bos_token_id = tokenizer.bos_token_id = 1
model.config.eos_token_id = tokenizer.eos_token_id = 2
return model
def _get_model_from_pretrained(model_class, model_name, from_tf=False, force_download=False):
torch = get_torch()
device = get_device()
if device == "cuda":
return model_class.from_pretrained(
model_name,
load_in_8bit=Config.load_8bit,
torch_dtype=torch.float16,
# device_map="auto",
# ? https://github.com/tloen/alpaca-lora/issues/21
device_map={'': 0},
from_tf=from_tf,
force_download=force_download,
trust_remote_code=Config.trust_remote_code
)
elif device == "mps":
return model_class.from_pretrained(
model_name,
device_map={"": device},
torch_dtype=torch.float16,
from_tf=from_tf,
force_download=force_download,
trust_remote_code=Config.trust_remote_code
)
else:
return model_class.from_pretrained(
model_name,
device_map={"": device},
low_cpu_mem_usage=True,
from_tf=from_tf,
force_download=force_download,
trust_remote_code=Config.trust_remote_code
)
def get_tokenizer(base_model_name):
if Config.ui_dev_mode:
return
if Global.is_train_starting or Global.is_training:
raise Exception("Cannot load new base model while training.")
loaded_tokenizer = Global.loaded_tokenizers.get(base_model_name)
if loaded_tokenizer:
return loaded_tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(
base_model_name,
trust_remote_code=Config.trust_remote_code
)
except Exception as e:
if 'LLaMATokenizer' in str(e):
tokenizer = LlamaTokenizer.from_pretrained(
base_model_name,
trust_remote_code=Config.trust_remote_code
)
else:
raise e
Global.loaded_tokenizers.set(base_model_name, tokenizer)
return tokenizer
def get_model(
base_model_name,
peft_model_name=None):
if Config.ui_dev_mode:
return
if Global.is_train_starting or Global.is_training:
raise Exception("Cannot load new base model while training.")
if peft_model_name == "None":
peft_model_name = None
model_key = base_model_name
if peft_model_name:
model_key = f"{base_model_name}//{peft_model_name}"
loaded_model = Global.loaded_models.get(model_key)
if loaded_model:
return loaded_model
peft_model_name_or_path = peft_model_name
if peft_model_name:
lora_models_directory_path = os.path.join(
Config.data_dir, "lora_models")
possible_lora_model_path = os.path.join(
lora_models_directory_path, peft_model_name)
if os.path.isdir(possible_lora_model_path):
peft_model_name_or_path = possible_lora_model_path
possible_model_info_json_path = os.path.join(
possible_lora_model_path, "info.json")
if os.path.isfile(possible_model_info_json_path):
try:
with open(possible_model_info_json_path, "r") as file:
json_data = json.load(file)
possible_hf_model_name = json_data.get("hf_model_name")
if possible_hf_model_name and json_data.get("load_from_hf"):
peft_model_name_or_path = possible_hf_model_name
except Exception as e:
raise ValueError(
"Error reading model info from {possible_model_info_json_path}: {e}")
Global.loaded_models.prepare_to_set()
clear_cache()
model = get_new_base_model(base_model_name)
if peft_model_name:
device = get_device()
torch = get_torch()
PeftModel = get_peft_model_class()
if device == "cuda":
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
torch_dtype=torch.float16,
# ? https://github.com/tloen/alpaca-lora/issues/21
device_map={'': 0},
)
elif device == "mps":
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
device_map={"": device},
)
if re.match("[^/]+/llama", base_model_name):
model.config.pad_token_id = get_tokenizer(
base_model_name).pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not Config.load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
Global.loaded_models.set(model_key, model)
clear_cache()
return model
def prepare_base_model(base_model_name=Config.default_base_model_name):
Global.new_base_model_that_is_ready_to_be_used = get_new_base_model(
base_model_name)
Global.name_of_new_base_model_that_is_ready_to_be_used = base_model_name
def clear_cache():
gc.collect()
torch = get_torch()
# if not shared.args.cpu: # will not be running on CPUs anyway
with torch.no_grad():
torch.cuda.empty_cache()
def unload_models():
Global.loaded_models.clear()
Global.loaded_tokenizers.clear()
clear_cache()
|