File size: 13,082 Bytes
94ece44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbdf699
94ece44
 
 
 
 
bbdf699
d803879
 
94ece44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e200f8c
 
 
 
 
 
f18eda8
 
e200f8c
 
 
f18eda8
e200f8c
f18eda8
 
 
 
 
 
1247a83
e200f8c
 
 
 
 
 
 
 
94ece44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbdf699
 
 
d803879
94ece44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1771a7
94ece44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e200f8c
94ece44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd15ecb
 
94ece44
 
 
 
 
 
 
b676b21
a1771a7
 
 
b676b21
94ece44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "private_outputs": true,
      "toc_visible": true,
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "gpuClass": "standard",
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/zetavg/LLaMA-LoRA-Tuner/blob/main/LLaMA_LoRA.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# πŸ¦™πŸŽ›οΈ LLaMA-LoRA Tuner\n",
        "\n",
        "TL;DR: **Runtime > Run All** (`⌘/Ctrl+F9`). Takes about 5 minutes to start. You will be promped to authorize Google Drive access."
      ],
      "metadata": {
        "id": "bb4nzBvLfZUj"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "#@markdown To prevent Colab from disconnecting you, here is a music player that will loop infinitely (it's silent):\n",
        "%%html\n",
        "<audio src=\"https://github.com/anars/blank-audio/raw/master/1-hour-of-silence.mp3\" autoplay muted loop controls />"
      ],
      "metadata": {
        "id": "DwarOgXbG77C",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# @title A small workaround { display-mode: \"form\" }\n",
        "# @markdown Don't panic if you see an error here. Just click the `RESTART RUNTIME` button in the output below, then Run All again.\n",
        "# @markdown The error will disappear on the next run.\n",
        "!pip install Pillow==9.3.0 numpy==1.23.5\n",
        "\n",
        "import PIL\n",
        "major, minor = map(float, PIL.__version__.split(\".\")[:2])\n",
        "version_float = major + minor / 10**len(str(minor))\n",
        "print('PIL', version_float)\n",
        "if version_float < 9.003:\n",
        "    raise Exception(\"Restart the runtime by clicking the 'RESTART RUNTIME' button above (or Runtime > Restart Runtime).\")\n",
        "\n",
        "import numpy\n",
        "major, minor = map(float, numpy.__version__.split(\".\")[:2])\n",
        "version_float = major + minor / 10**len(str(minor))\n",
        "print('numpy', version_float)\n",
        "if version_float < 1.0023:\n",
        "    raise Exception(\"Restart the runtime by clicking the 'RESTART RUNTIME' button above (or Runtime > Restart Runtime).\")"
      ],
      "metadata": {
        "id": "XcJ4WO3KhOX1"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Config\n",
        "\n",
        "Some configurations to run this notebook. "
      ],
      "metadata": {
        "id": "5uS5jJ8063f_"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# @title Git/Project { display-mode: \"form\", run: \"auto\" }\n",
        "# @markdown Project settings.\n",
        "\n",
        "# @markdown The URL of the LLaMA-LoRA-Tuner project<br>&nbsp;&nbsp;(default: `https://github.com/zetavg/LLaMA-LoRA-Tuner.git`):\n",
        "llama_lora_project_url = \"https://github.com/zetavg/LLaMA-LoRA-Tuner.git\" # @param {type:\"string\"}\n",
        "# @markdown The branch to use for LLaMA-LoRA-Tuner project:\n",
        "llama_lora_project_branch = \"main\" # @param {type:\"string\"}\n",
        "\n",
        "# # @markdown Forces the local directory to be updated by the remote branch:\n",
        "# force_update = True # @param {type:\"boolean\"}\n"
      ],
      "metadata": {
        "id": "v3ZCPW0JBCcH"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# @title Google Drive { display-mode: \"form\", run: \"auto\" }\n",
        "# @markdown Google Drive will be used to store data that is used or outputed by this notebook. you will be prompted to authorize access while running this notebook. \n",
        "#\n",
        "# @markdown Currently, it's not possible to access only a specific folder of Google Drive, we have no choice to mount the entire Google Drive, but will only access given folder.\n",
        "#\n",
        "# @markdown You can customize the location of the stored data here.\n",
        "\n",
        "# @markdown The folder in Google Drive where Colab Notebook data are stored<br />&nbsp;&nbsp;**(WARNING: The content of this folder will be modified by this notebook)**:\n",
        "google_drive_folder = \"Colab Data/LLaMA-LoRA Tuner\" # @param {type:\"string\"}\n",
        "# google_drive_colab_data_folder = \"Colab Notebooks/Notebook Data\"\n",
        "\n",
        "# Where Google Drive will be mounted in the Colab runtime.\n",
        "google_drive_mount_path = \"/content/drive\"\n",
        "\n",
        "from requests import get\n",
        "from socket import gethostname, gethostbyname\n",
        "host_ip = gethostbyname(gethostname())\n",
        "colab_notebook_filename = get(f\"http://{host_ip}:9000/api/sessions\").json()[0][\"name\"]\n",
        "\n",
        "# def remove_ipynb_extension(filename: str) -> str:\n",
        "#     extension = \".ipynb\"\n",
        "#     if filename.endswith(extension):\n",
        "#         return filename[:-len(extension)]\n",
        "#     return filename\n",
        "\n",
        "# colab_notebook_name = remove_ipynb_extension(colab_notebook_filename)\n",
        "\n",
        "from google.colab import drive\n",
        "drive.mount(google_drive_mount_path)\n",
        "\n",
        "# google_drive_data_directory_relative_path = f\"{google_drive_colab_data_folder}/{colab_notebook_name}\"\n",
        "google_drive_data_directory_relative_path = google_drive_folder\n",
        "google_drive_data_directory_path = f\"{google_drive_mount_path}/My Drive/{google_drive_data_directory_relative_path}\"\n",
        "!mkdir -p \"{google_drive_data_directory_path}\"\n",
        "!ln -nsf \"{google_drive_data_directory_path}\" ./data\n",
        "!touch \"data/This folder is used by the Colab notebook \\\"{colab_notebook_filename}\\\".txt\"\n",
        "!echo \"Data will be stored in Google Drive folder: \\\"{google_drive_data_directory_relative_path}\\\", which is mounted under \\\"{google_drive_data_directory_path}\\\"\"\n"
      ],
      "metadata": {
        "id": "iZmRtUY68U5f"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# @title Model/Training Settings { display-mode: \"form\", run: \"auto\" }\n",
        "\n",
        "base_model = \"decapoda-research/llama-7b-hf\" # @param {type:\"string\"}"
      ],
      "metadata": {
        "id": "Ep3Qhwj0Bzwf"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Runtime Info\n",
        "\n",
        "Print out some information about the Colab runtime. Code from https://colab.research.google.com/notebooks/pro.ipynb."
      ],
      "metadata": {
        "id": "Qg8tzrgb6ya_"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "AHbRt8sK6YWy"
      },
      "outputs": [],
      "source": [
        "# @title GPU Info { display-mode: \"form\" }\n",
        "#\n",
        "# @markdown By running this cell, you can see what GPU you've been assigned.\n",
        "#\n",
        "# @markdown If the execution result of running the code cell below is \"Not connected to a GPU\", you can change the runtime by going to `Runtime / Change runtime type` in the menu to enable a GPU accelerator, and then re-execute the code cell.\n",
        "\n",
        "\n",
        "gpu_info = !nvidia-smi\n",
        "gpu_info = '\\n'.join(gpu_info)\n",
        "if gpu_info.find('failed') >= 0:\n",
        "  print('Not connected to a GPU')\n",
        "else:\n",
        "  print(gpu_info)"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# @title RAM Info { display-mode: \"form\" }\n",
        "#\n",
        "# @markdown By running this code cell, You can see how much memory you have available.\n",
        "#\n",
        "# @markdown Normally, a high-RAM runtime is not needed, but if you need more RAM, you can enable a high-RAM runtime via `Runtime / Change runtime type` in the menu. Then select High-RAM in the Runtime shape dropdown. After, re-execute the code cell.\n",
        "\n",
        "from psutil import virtual_memory\n",
        "ram_gb = virtual_memory().total / 1e9\n",
        "print('Your runtime has {:.1f} gigabytes of available RAM\\n'.format(ram_gb))\n",
        "\n",
        "if ram_gb < 20:\n",
        "  print('Not using a high-RAM runtime')\n",
        "else:\n",
        "  print('You are using a high-RAM runtime!')"
      ],
      "metadata": {
        "id": "rGM5MYjR7yeS"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Prepare the Project\n",
        "\n",
        "Clone the project and install dependencies (takes about 5m on the first run)."
      ],
      "metadata": {
        "id": "8vSPMNtNAqOo"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "![ ! -d llama_lora ] && git clone -b {llama_lora_project_branch} --filter=tree:0 {llama_lora_project_url} llama_lora\n",
        "!cd llama_lora && git add --all && git stash && git fetch origin {llama_lora_project_branch} && git checkout {llama_lora_project_branch} && git reset origin/{llama_lora_project_branch} --hard\n",
        "![ ! -f llama-lora-requirements-installed ] && cd llama_lora && pip install -r requirements.lock.txt && touch ../llama-lora-requirements-installed"
      ],
      "metadata": {
        "id": "JGYz2VDoAzC8"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Launch"
      ],
      "metadata": {
        "id": "o90p1eYQimyr"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# The following command will launch the app in one shot, but we will not do this here.\n",
        "# Instead, we will import and run Python code from the runtime, so that each part\n",
        "# can be reloaded easily in the Colab notebook and provide readable outputs.\n",
        "# It also resolves the GPU out-of-memory issue on training.\n",
        "# !python llama_lora/app.py --base_model='{base_model}' --data_dir='./data' --share"
      ],
      "metadata": {
        "id": "HYVjcvwXimB6"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# @title Load the App (set config, prepare data dir, load base bodel)\n",
        "\n",
        "# @markdown For a LLaMA-7B model, it will take about ~5m to load for the first execution,\n",
        "# @markdown including download. Subsequent executions will take about 2m to load.\n",
        "\n",
        "# Set Configs\n",
        "from llama_lora.llama_lora.globals import Global\n",
        "Global.default_base_model_name = Global.base_model_name = base_model\n",
        "Global.base_model_choices = [base_model]\n",
        "data_dir_realpath = !realpath ./data\n",
        "Global.data_dir = data_dir_realpath[0]\n",
        "Global.load_8bit = True\n",
        "\n",
        "# Prepare Data Dir\n",
        "import os\n",
        "from llama_lora.llama_lora.utils.data import init_data_dir\n",
        "init_data_dir()\n",
        "\n",
        "# Load the Base Model\n",
        "from llama_lora.llama_lora.models import prepare_base_model\n",
        "prepare_base_model()"
      ],
      "metadata": {
        "id": "Yf6g248ylteP"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Start Gradio UI πŸš€ (open the app from the URL output-ed here)\n",
        "\n",
        "You will see `Running on public URL: https://...` in the output of the following code cell, click on it to open the Gradio UI."
      ],
      "metadata": {
        "id": "K-hCouBClKAe"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import gradio as gr\n",
        "from llama_lora.llama_lora.ui.main_page import main_page, get_page_title, main_page_custom_css\n",
        "\n",
        "with gr.Blocks(title=get_page_title(), css=main_page_custom_css()) as app:\n",
        "    main_page()\n",
        "\n",
        "app.queue(concurrency_count=1).launch(share=True, debug=True, server_name=\"127.0.0.1\")"
      ],
      "metadata": {
        "id": "iLygNTcHk0N8"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}