Spaces:
Runtime error
Runtime error
File size: 19,642 Bytes
a5e11b9 3daa16f 79d936d 3daa16f a5e11b9 6947876 a5e11b9 6947876 79d936d a5e11b9 300b660 cff173a a5e11b9 79d936d a5e11b9 69fa725 3daa16f 79d936d a5e11b9 79d936d a5e11b9 79d936d a5e11b9 79d936d 6947876 79d936d 6947876 3daa16f 6947876 79d936d 6947876 79d936d 6947876 3daa16f 79d936d a5e11b9 79d936d 300b660 cff173a 79d936d a5e11b9 79d936d a5e11b9 79d936d a5e11b9 79d936d a5e11b9 79d936d a5e11b9 79d936d a5e11b9 79d936d 3daa16f 79d936d cff173a 79d936d cff173a 79d936d cff173a 79d936d cff173a 79d936d 3daa16f 6947876 3daa16f 6947876 3daa16f 6947876 3daa16f 79d936d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import os
import json
import time
import math
import datetime
import pytz
import socket
import threading
import traceback
import altair as alt
import pandas as pd
import gradio as gr
from huggingface_hub import try_to_load_from_cache, snapshot_download
from transformers import TrainingArguments
from ...config import Config
from ...globals import Global
from ...models import clear_cache, unload_models
from ...utils.prompter import Prompter
from ...utils.sample_evenly import sample_evenly
from ..trainer_callback import (
UiTrainerCallback, reset_training_status,
update_training_states, set_train_output
)
from .data_processing import get_data_from_input
def status_message_callback(message):
if Global.should_stop_training:
return True
Global.training_status_text = message
def params_info_callback(all_params, trainable_params):
Global.training_params_info_text = f"Params: {trainable_params}/{all_params} ({100 * trainable_params / all_params:.4f}% trainable)"
def do_train(
# Dataset
template,
load_dataset_from,
dataset_from_data_dir,
dataset_text,
dataset_text_format,
dataset_plain_text_input_variables_separator,
dataset_plain_text_input_and_output_separator,
dataset_plain_text_data_separator,
# Training Options
max_seq_length,
evaluate_data_count,
micro_batch_size,
gradient_accumulation_steps,
epochs,
learning_rate,
train_on_inputs,
lora_r,
lora_alpha,
lora_dropout,
lora_target_modules,
lora_modules_to_save,
load_in_8bit,
fp16,
bf16,
gradient_checkpointing,
save_steps,
save_total_limit,
logging_steps,
additional_training_arguments,
additional_lora_config,
model_name,
continue_from_model,
continue_from_checkpoint,
progress=gr.Progress(track_tqdm=False),
):
if Global.is_training or Global.is_train_starting:
return render_training_status() + render_loss_plot()
reset_training_status()
Global.is_train_starting = True
try:
base_model_name = Global.base_model_name
tokenizer_name = Global.tokenizer_name or Global.base_model_name
resume_from_checkpoint_param = None
if continue_from_model == "-" or continue_from_model == "None":
continue_from_model = None
if continue_from_checkpoint == "-" or continue_from_checkpoint == "None":
continue_from_checkpoint = None
if continue_from_model:
resume_from_model_path = os.path.join(
Config.data_dir, "lora_models", continue_from_model)
resume_from_checkpoint_param = resume_from_model_path
if continue_from_checkpoint:
resume_from_checkpoint_param = os.path.join(
resume_from_checkpoint_param, continue_from_checkpoint)
will_be_resume_from_checkpoint_file = os.path.join(
resume_from_checkpoint_param, "pytorch_model.bin")
if not os.path.exists(will_be_resume_from_checkpoint_file):
raise ValueError(
f"Unable to resume from checkpoint {continue_from_model}/{continue_from_checkpoint}. Resuming is only possible from checkpoints stored locally in the data directory. Please ensure that the file '{will_be_resume_from_checkpoint_file}' exists.")
else:
will_be_resume_from_checkpoint_file = os.path.join(
resume_from_checkpoint_param, "adapter_model.bin")
if not os.path.exists(will_be_resume_from_checkpoint_file):
# Try to get model in Hugging Face cache
resume_from_checkpoint_param = None
possible_hf_model_name = None
possible_model_info_file = os.path.join(
resume_from_model_path, "info.json")
if "/" in continue_from_model:
possible_hf_model_name = continue_from_model
elif os.path.exists(possible_model_info_file):
with open(possible_model_info_file, "r") as file:
model_info = json.load(file)
possible_hf_model_name = model_info.get(
"hf_model_name")
if possible_hf_model_name:
possible_hf_model_cached_path = try_to_load_from_cache(
possible_hf_model_name, 'adapter_model.bin')
if not possible_hf_model_cached_path:
snapshot_download(possible_hf_model_name)
possible_hf_model_cached_path = try_to_load_from_cache(
possible_hf_model_name, 'adapter_model.bin')
if possible_hf_model_cached_path:
resume_from_checkpoint_param = os.path.dirname(
possible_hf_model_cached_path)
if not resume_from_checkpoint_param:
raise ValueError(
f"Unable to continue from model {continue_from_model}. Continuation is only possible from models stored locally in the data directory. Please ensure that the file '{will_be_resume_from_checkpoint_file}' exists.")
output_dir = os.path.join(Config.data_dir, "lora_models", model_name)
if os.path.exists(output_dir):
if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
raise ValueError(
f"The output directory already exists and is not empty. ({output_dir})")
wandb_group = template
wandb_tags = [f"template:{template}"]
if load_dataset_from == "Data Dir" and dataset_from_data_dir:
wandb_group += f"/{dataset_from_data_dir}"
wandb_tags.append(f"dataset:{dataset_from_data_dir}")
finetune_args = {
'base_model': base_model_name,
'tokenizer': tokenizer_name,
'output_dir': output_dir,
'micro_batch_size': micro_batch_size,
'gradient_accumulation_steps': gradient_accumulation_steps,
'num_train_epochs': epochs,
'learning_rate': learning_rate,
'cutoff_len': max_seq_length,
'val_set_size': evaluate_data_count,
'lora_r': lora_r,
'lora_alpha': lora_alpha,
'lora_dropout': lora_dropout,
'lora_target_modules': lora_target_modules,
'lora_modules_to_save': lora_modules_to_save,
'train_on_inputs': train_on_inputs,
'load_in_8bit': load_in_8bit,
'fp16': fp16,
'bf16': bf16,
'gradient_checkpointing': gradient_checkpointing,
'group_by_length': False,
'resume_from_checkpoint': resume_from_checkpoint_param,
'save_steps': save_steps,
'save_total_limit': save_total_limit,
'logging_steps': logging_steps,
'additional_training_arguments': additional_training_arguments,
'additional_lora_config': additional_lora_config,
'wandb_api_key': Config.wandb_api_key,
'wandb_project': Config.default_wandb_project if Config.enable_wandb else None,
'wandb_group': wandb_group,
'wandb_run_name': model_name,
'wandb_tags': wandb_tags
}
prompter = Prompter(template)
data = get_data_from_input(
load_dataset_from=load_dataset_from,
dataset_text=dataset_text,
dataset_text_format=dataset_text_format,
dataset_plain_text_input_variables_separator=dataset_plain_text_input_variables_separator,
dataset_plain_text_input_and_output_separator=dataset_plain_text_input_and_output_separator,
dataset_plain_text_data_separator=dataset_plain_text_data_separator,
dataset_from_data_dir=dataset_from_data_dir,
prompter=prompter
)
def training():
Global.is_training = True
try:
# Need RAM for training
unload_models()
Global.new_base_model_that_is_ready_to_be_used = None
Global.name_of_new_base_model_that_is_ready_to_be_used = None
clear_cache()
train_data = prompter.get_train_data_from_dataset(data)
if Config.ui_dev_mode:
Global.training_args = TrainingArguments(
logging_steps=logging_steps, output_dir=""
)
message = "Currently in UI dev mode, not doing the actual training."
message += f"\n\nArgs: {json.dumps(finetune_args, indent=2)}"
message += f"\n\nTrain data (first 5):\n{json.dumps(train_data[:5], indent=2)}"
print(message)
total_epochs = epochs
total_steps = len(train_data) * epochs
log_history = []
initial_loss = 2
loss_decay_rate = 0.8
for i in range(total_steps):
if (Global.should_stop_training):
break
current_step = i + 1
current_epoch = i / (total_steps / total_epochs)
if (current_step % logging_steps == 0):
loss = initial_loss * \
math.exp(-loss_decay_rate * current_epoch)
log_history.append({
'loss': loss,
'learning_rate': 0.0001,
'epoch': current_epoch
})
update_training_states(
total_steps=total_steps,
current_step=current_step,
total_epochs=total_epochs,
current_epoch=current_epoch,
log_history=log_history
)
time.sleep(0.1)
result_message = set_train_output(message)
print(result_message)
time.sleep(1)
Global.is_training = False
return
training_callbacks = [UiTrainerCallback]
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, "info.json"), 'w') as info_json_file:
dataset_name = "N/A (from text input)"
if load_dataset_from == "Data Dir":
dataset_name = dataset_from_data_dir
info = {
'base_model': base_model_name,
'prompt_template': template,
'dataset_name': dataset_name,
'dataset_rows': len(train_data),
'trained_on_machine': socket.gethostname(),
'timestamp': time.time(),
}
if continue_from_model:
info['continued_from_model'] = continue_from_model
if continue_from_checkpoint:
info['continued_from_checkpoint'] = continue_from_checkpoint
if Global.version:
info['tuner_version'] = Global.version
json.dump(info, info_json_file, indent=2)
train_output = Global.finetune_train_fn(
train_data=train_data,
callbacks=training_callbacks,
status_message_callback=status_message_callback,
params_info_callback=params_info_callback,
additional_wandb_config=info,
**finetune_args,
)
result_message = set_train_output(train_output)
print(result_message + "\n" + str(train_output))
clear_cache()
Global.is_training = False
except Exception as e:
traceback.print_exc()
Global.training_error_message = str(e)
finally:
Global.is_training = False
training_thread = threading.Thread(target=training)
training_thread.daemon = True
training_thread.start()
except Exception as e:
Global.is_training = False
traceback.print_exc()
Global.training_error_message = str(e)
finally:
Global.is_train_starting = False
return render_training_status() + render_loss_plot()
def render_training_status():
if not Global.is_training:
if Global.is_train_starting:
html_content = """
<div class="progress-block">
<div class="progress-level">
<div class="progress-level-inner">
Starting...
</div>
</div>
</div>
"""
return (gr.HTML.update(value=html_content), gr.HTML.update(visible=True))
if Global.training_error_message:
html_content = f"""
<div class="progress-block is_error">
<div class="progress-level">
<div class="error">
<div class="title">
β Something went wrong
</div>
<div class="error-message">{Global.training_error_message}</div>
</div>
</div>
</div>
"""
return (gr.HTML.update(value=html_content), gr.HTML.update(visible=False))
if Global.train_output_str:
end_message = "β
Training completed"
if Global.should_stop_training:
end_message = "π Train aborted"
params_info_html = ""
if Global.training_params_info_text:
params_info_html = f"""
<div class="params-info">
{Global.training_params_info_text}
</div>
"""
html_content = f"""
<div class="progress-block">
<div class="progress-level">
<div class="output">
<div class="title">
{end_message}
</div>
<div class="message">{Global.train_output_str}</div>
</div>
</div>
{params_info_html}
</div>
"""
return (gr.HTML.update(value=html_content), gr.HTML.update(visible=False))
if Global.training_status_text:
html_content = f"""
<div class="progress-block">
<div class="status">{Global.training_status_text}</div>
</div>
"""
return (gr.HTML.update(value=html_content), gr.HTML.update(visible=False))
html_content = """
<div class="progress-block">
<div class="empty-text">
Training status will be shown here
</div>
</div>
"""
return (gr.HTML.update(value=html_content), gr.HTML.update(visible=False))
meta_info = []
meta_info.append(
f"{Global.training_current_step}/{Global.training_total_steps} steps")
current_time = time.time()
time_elapsed = current_time - Global.train_started_at
time_remaining = -1
if Global.training_eta:
time_remaining = Global.training_eta - current_time
if time_remaining >= 0:
meta_info.append(
f"{format_time(time_elapsed)}<{format_time(time_remaining)}")
meta_info.append(f"ETA: {format_timestamp(Global.training_eta)}")
else:
meta_info.append(format_time(time_elapsed))
params_info_html = ""
if Global.training_params_info_text:
params_info_html = f"""
<div class="params-info">
{Global.training_params_info_text}
</div>
"""
html_content = f"""
<div class="progress-block is_training">
<div class="meta-text">{' | '.join(meta_info)}</div>
<div class="progress-level">
<div class="progress-level-inner">
{Global.training_status_text} - {Global.training_progress * 100:.2f}%
</div>
<div class="progress-bar-wrap">
<div class="progress-bar" style="width: {Global.training_progress * 100:.2f}%;">
</div>
</div>
</div>
{params_info_html}
</div>
"""
return (gr.HTML.update(value=html_content), gr.HTML.update(visible=True))
def render_loss_plot():
if len(Global.training_log_history) <= 2:
return (gr.Column.update(visible=False), gr.Plot.update(visible=False))
max_elements = 5000
training_log_history = sample_evenly(
Global.training_log_history, max_elements=max_elements)
logging_steps = Global.training_args and Global.training_args.logging_steps
loss_data = [
{
'type': 'train_loss' if 'loss' in item else 'eval_loss',
'loss': item.get('loss') or item.get('eval_loss'),
'epoch': item.get('epoch')
} for item in training_log_history
if ('loss' in item or 'eval_loss' in item)
and 'epoch' in item
]
use_steps = False
if len(Global.training_log_history) <= max_elements and logging_steps:
for index, item in enumerate(loss_data):
item["step"] = index * logging_steps
use_steps = True
source = pd.DataFrame(loss_data)
highlight = alt.selection(
type='single', # type: ignore
on='mouseover', fields=['type'], nearest=True
)
if use_steps:
base = alt.Chart(source).encode( # type: ignore
x='step:Q',
y='loss:Q',
color='type:N',
tooltip=['type:N', 'loss:Q', 'step:Q', 'epoch:Q']
)
else:
base = alt.Chart(source).encode( # type: ignore
x='epoch:Q',
y='loss:Q',
color='type:N',
tooltip=['type:N', 'loss:Q', 'epoch:Q']
)
points = base.mark_circle().encode(
opacity=alt.value(0)
).add_selection(
highlight
).properties(
width=640
)
lines = base.mark_line().encode(
size=alt.condition(~highlight, alt.value(1), alt.value(3))
)
return (gr.Column.update(visible=True), gr.Plot.update(points + lines, visible=True))
def format_time(seconds):
hours, remainder = divmod(seconds, 3600)
minutes, seconds = divmod(remainder, 60)
if hours == 0:
return "{:02d}:{:02d}".format(int(minutes), int(seconds))
else:
return "{:02d}:{:02d}:{:02d}".format(int(hours), int(minutes), int(seconds))
def format_timestamp(timestamp):
dt_naive = datetime.datetime.utcfromtimestamp(timestamp)
utc = pytz.UTC
timezone = Config.timezone
dt_aware = utc.localize(dt_naive).astimezone(timezone)
now = datetime.datetime.now(timezone)
delta = dt_aware.date() - now.date()
if delta.days == 0:
time_str = ""
elif delta.days == 1:
time_str = "tomorrow at "
elif delta.days == -1:
time_str = "yesterday at "
else:
time_str = dt_aware.strftime('%A, %B %d at ')
time_str += dt_aware.strftime('%I:%M %p').lower()
return time_str
|