File size: 37,708 Bytes
d754e91
750c900
d754e91
5929f2a
d754e91
 
 
 
 
 
90c428d
4870204
db1ee85
35fba55
 
 
517781a
d754e91
 
 
 
4ac0d6a
883e16a
4ac0d6a
d754e91
750c900
 
 
 
 
 
 
 
90c428d
fd15ecb
0054cc5
90c428d
 
0054cc5
90c428d
750c900
90c428d
 
 
 
 
35fba55
d754e91
 
 
 
 
 
 
 
 
 
 
4ac0d6a
87a0e23
d754e91
fd15ecb
90c428d
35fba55
883e16a
 
 
 
 
 
 
 
 
35fba55
 
 
 
 
750c900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35fba55
90c428d
35fba55
5929f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750c900
5929f2a
750c900
883e16a
 
750c900
 
883e16a
750c900
 
 
 
 
 
883e16a
5929f2a
 
750c900
 
 
 
 
 
 
 
 
 
 
 
 
5929f2a
35fba55
883e16a
89dd922
750c900
 
 
 
883e16a
35fba55
 
90c428d
 
35fba55
883e16a
 
 
 
 
 
4870204
 
 
 
 
 
 
 
 
 
 
750c900
 
4870204
 
 
 
 
 
 
 
750c900
 
 
 
 
 
4870204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35fba55
 
d754e91
 
883e16a
 
 
 
 
d754e91
 
 
 
 
 
 
 
 
 
fd15ecb
35fba55
90c428d
d754e91
 
 
 
 
 
 
 
9d46857
 
 
 
 
 
 
 
750c900
 
9d46857
 
 
750c900
 
9d46857
 
 
 
517781a
d754e91
 
 
 
 
 
 
 
 
517781a
883e16a
 
750c900
 
9d46857
 
 
517781a
 
 
 
 
 
 
9d46857
 
 
 
 
 
517781a
9d46857
 
750c900
 
9d46857
 
 
517781a
9d46857
d754e91
 
66c7018
 
 
 
 
 
 
 
 
 
d754e91
750c900
 
 
 
db1ee85
750c900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1ee85
 
 
 
 
 
 
 
 
 
 
 
320751d
 
d754e91
 
517781a
 
 
 
 
 
fd15ecb
517781a
 
d754e91
 
 
 
 
66c7018
d754e91
 
 
 
 
 
 
66c7018
72ff821
e615353
 
 
 
 
320751d
 
 
 
 
 
 
 
 
 
 
 
 
 
d754e91
66c7018
 
 
e615353
9279c83
e615353
66c7018
72ff821
 
 
 
 
 
 
d754e91
72ff821
 
d754e91
3889cb7
d754e91
 
 
 
e615353
 
 
 
 
 
d754e91
e615353
 
 
 
 
d754e91
 
3889cb7
d754e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e615353
4ac0d6a
 
 
 
 
 
 
 
 
 
72ff821
 
 
 
 
 
 
 
 
a0c076d
 
 
883e16a
a0c076d
750c900
469dc51
750c900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1ee85
 
750c900
 
 
 
 
 
 
 
db1ee85
 
750c900
 
 
 
 
 
 
 
db1ee85
 
750c900
 
 
 
 
a0c076d
 
 
 
 
 
 
 
 
 
 
 
4ac0d6a
750c900
 
fd15ecb
320751d
4ac0d6a
 
 
320751d
d754e91
320751d
d754e91
 
 
 
320751d
d754e91
517781a
 
 
 
 
 
320751d
d754e91
fd15ecb
 
 
 
 
 
 
 
517781a
 
 
 
 
 
d754e91
90c428d
 
750c900
 
90c428d
35fba55
d754e91
 
 
 
 
 
 
 
 
 
 
 
4ac0d6a
d754e91
750c900
 
72ff821
d754e91
883e16a
 
 
 
 
 
d754e91
320751d
 
 
 
 
 
 
 
 
 
 
66c7018
d754e91
 
 
 
80c2789
d754e91
 
80c2789
fd15ecb
d754e91
 
 
 
80c2789
e9c5abc
 
 
80c2789
 
e9c5abc
 
 
80c2789
66c7018
 
 
80c2789
 
66c7018
 
80c2789
66c7018
 
 
 
 
 
80c2789
 
 
 
 
 
 
 
 
e615353
 
 
 
 
80c2789
 
 
 
66c7018
 
 
80c2789
3889cb7
 
66c7018
d754e91
80c2789
 
 
 
 
3889cb7
 
80c2789
d754e91
80c2789
 
 
 
 
3889cb7
 
80c2789
d754e91
80c2789
 
 
 
 
 
 
d754e91
80c2789
 
 
 
 
 
 
d754e91
80c2789
 
 
 
 
 
 
d754e91
80c2789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d754e91
 
72ff821
d754e91
 
80c2789
d754e91
 
 
80c2789
d754e91
 
80c2789
 
 
 
d754e91
80c2789
 
 
d754e91
 
 
 
 
 
80c2789
d754e91
 
 
 
e615353
fd15ecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e615353
 
 
 
 
 
 
e3a5631
 
 
 
 
 
e615353
e3a5631
 
e615353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a38e1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e615353
883e16a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d754e91
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import gradio as gr
import os
import time
import json

import torch
import transformers
from transformers import GenerationConfig

from ..globals import Global
from ..models import get_model, get_tokenizer, get_device
from ..lib.inference import generate
from ..lib.csv_logger import CSVLogger
from ..utils.data import (
    get_available_template_names,
    get_available_lora_model_names,
    get_info_of_available_lora_model)
from ..utils.prompter import Prompter

device = get_device()

default_show_raw = True
inference_output_lines = 12


class LoggingItem:
    def __init__(self, label):
        self.label = label

    def deserialize(self, value, **kwargs):
        return value


def prepare_inference(lora_model_name, progress=gr.Progress(track_tqdm=True)):
    base_model_name = Global.base_model_name
    tokenizer_name = Global.tokenizer_name or Global.base_model_name

    try:
        get_tokenizer(tokenizer_name)
        get_model(base_model_name, lora_model_name)
        return ("", "", gr.Textbox.update(visible=False))

    except Exception as e:
        raise gr.Error(e)


def do_inference(
    lora_model_name,
    prompt_template,
    variable_0, variable_1, variable_2, variable_3,
    variable_4, variable_5, variable_6, variable_7,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    repetition_penalty=1.2,
    max_new_tokens=128,
    stream_output=False,
    show_raw=False,
    progress=gr.Progress(track_tqdm=True),
):
    base_model_name = Global.base_model_name

    try:
        if Global.generation_force_stopped_at is not None:
            required_elapsed_time_after_forced_stop = 1
            current_unix_time = time.time()
            remaining_time = required_elapsed_time_after_forced_stop - \
                (current_unix_time - Global.generation_force_stopped_at)
            if remaining_time > 0:
                time.sleep(remaining_time)
            Global.generation_force_stopped_at = None

        variables = [variable_0, variable_1, variable_2, variable_3,
                     variable_4, variable_5, variable_6, variable_7]
        prompter = Prompter(prompt_template)
        prompt = prompter.generate_prompt(variables)

        generation_config = GenerationConfig(
            # to avoid ValueError('`temperature` has to be a strictly positive float, but is 2')
            temperature=float(temperature),
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            num_beams=num_beams,
            # https://github.com/huggingface/transformers/issues/22405#issuecomment-1485527953
            do_sample=temperature > 0,
        )

        def get_output_for_flagging(output, raw_output, completed=True):
            return json.dumps({
                'base_model': base_model_name,
                'adaptor_model': lora_model_name,
                'prompt': prompt,
                'output': output,
                'completed': completed,
                'raw_output': raw_output,
                'max_new_tokens': max_new_tokens,
                'prompt_template': prompt_template,
                'prompt_template_variables': variables,
                'generation_config': generation_config.to_dict(),
            })

        if Global.ui_dev_mode:
            message = f"Hi, I’m currently in UI-development mode and do not have access to resources to process your request. However, this behavior is similar to what will actually happen, so you can try and see how it will work!\n\nBase model: {base_model_name}\nLoRA model: {lora_model_name}\n\nThe following is your prompt:\n\n{prompt}"
            print(message)

            if stream_output:
                def word_generator(sentence):
                    lines = message.split('\n')
                    out = ""
                    for line in lines:
                        words = line.split(' ')
                        for i in range(len(words)):
                            if out:
                                out += ' '
                            out += words[i]
                            yield out
                        out += "\n"
                        yield out

                output = ""
                for partial_sentence in word_generator(message):
                    output = partial_sentence
                    yield (
                        gr.Textbox.update(
                            value=output,
                            lines=inference_output_lines),
                        json.dumps(
                            list(range(len(output.split()))),
                            indent=2),
                        gr.Textbox.update(
                            value=get_output_for_flagging(
                                output, "", completed=False),
                            visible=True)
                    )
                    time.sleep(0.05)

                yield (
                    gr.Textbox.update(
                        value=output,
                        lines=inference_output_lines),
                    json.dumps(
                        list(range(len(output.split()))),
                        indent=2),
                    gr.Textbox.update(
                        value=get_output_for_flagging(
                            output, "", completed=True),
                        visible=True)
                )

                return
            time.sleep(1)
            yield (
                gr.Textbox.update(value=message, lines=inference_output_lines),
                json.dumps(list(range(len(message.split()))), indent=2),
                gr.Textbox.update(
                    value=get_output_for_flagging(message, ""),
                    visible=True)
            )
            return

        tokenizer = get_tokenizer(base_model_name)
        model = get_model(base_model_name, lora_model_name)

        def ui_generation_stopping_criteria(input_ids, score, **kwargs):
            if Global.should_stop_generating:
                return True
            return False

        Global.should_stop_generating = False

        generation_args = {
            'model': model,
            'tokenizer': tokenizer,
            'prompt': prompt,
            'generation_config': generation_config,
            'max_new_tokens': max_new_tokens,
            'stopping_criteria': [ui_generation_stopping_criteria],
            'stream_output': stream_output
        }

        for (decoded_output, output, completed) in generate(**generation_args):
            raw_output_str = str(output)
            response = prompter.get_response(decoded_output)

            if Global.should_stop_generating:
                return

            yield (
                gr.Textbox.update(
                    value=response, lines=inference_output_lines),
                raw_output_str,
                gr.Textbox.update(
                    value=get_output_for_flagging(
                        decoded_output, raw_output_str, completed=completed),
                    visible=True)
            )

            if Global.should_stop_generating:
                # If the user stops the generation, and then clicks the
                # generation button again, they may mysteriously landed
                # here, in the previous, should-be-stopped generation
                # function call, with the new generation function not be
                # called at all. To workaround this, we yield a message
                # and setting lines=1, and if the front-end JS detects
                # that lines has been set to 1 (rows="1" in HTML),
                # it will automatically click the generate button again
                # (gr.Textbox.update() does not support updating
                # elem_classes or elem_id).
                # [WORKAROUND-UI01]
                yield (
                    gr.Textbox.update(
                        value="Please retry", lines=1),
                    None)

        return
    except Exception as e:
        raise gr.Error(e)


def handle_stop_generate():
    Global.generation_force_stopped_at = time.time()
    Global.should_stop_generating = True


def reload_selections(current_lora_model, current_prompt_template):
    available_template_names = get_available_template_names()
    available_template_names_with_none = available_template_names + ["None"]

    if current_prompt_template not in available_template_names_with_none:
        current_prompt_template = None

    current_prompt_template = current_prompt_template or next(
        iter(available_template_names_with_none), None)

    default_lora_models = []
    available_lora_models = default_lora_models + get_available_lora_model_names()
    available_lora_models = available_lora_models + ["None"]

    current_lora_model = current_lora_model or next(
        iter(available_lora_models), None)

    return (gr.Dropdown.update(choices=available_lora_models, value=current_lora_model),
            gr.Dropdown.update(choices=available_template_names_with_none, value=current_prompt_template))


def get_warning_message_for_lora_model_and_prompt_template(lora_model, prompt_template):
    messages = []

    lora_mode_info = get_info_of_available_lora_model(lora_model)

    if lora_mode_info and isinstance(lora_mode_info, dict):
        model_base_model = lora_mode_info.get("base_model")
        if model_base_model and model_base_model != Global.base_model_name:
            messages.append(
                f"⚠️ This model was trained on top of base model `{model_base_model}`, it might not work properly with the selected base model `{Global.base_model_name}`.")

        model_prompt_template = lora_mode_info.get("prompt_template")
        if model_prompt_template and model_prompt_template != prompt_template:
            messages.append(
                f"This model was trained with prompt template `{model_prompt_template}`.")

    return " ".join(messages)


def handle_prompt_template_change(prompt_template, lora_model):
    prompter = Prompter(prompt_template)
    var_names = prompter.get_variable_names()
    human_var_names = [' '.join(word.capitalize()
                                for word in item.split('_')) for item in var_names]
    gr_updates = [gr.Textbox.update(
        label=name, visible=True) for name in human_var_names]
    while len(gr_updates) < 8:
        gr_updates.append(gr.Textbox.update(
            label="Not Used", visible=False))

    model_prompt_template_message_update = gr.Markdown.update(
        "", visible=False)
    warning_message = get_warning_message_for_lora_model_and_prompt_template(
        lora_model, prompt_template)
    if warning_message:
        model_prompt_template_message_update = gr.Markdown.update(
            warning_message, visible=True)

    return [model_prompt_template_message_update] + gr_updates


def handle_lora_model_change(lora_model, prompt_template):
    lora_mode_info = get_info_of_available_lora_model(lora_model)

    if lora_mode_info and isinstance(lora_mode_info, dict):
        model_prompt_template = lora_mode_info.get("prompt_template")
        if model_prompt_template:
            available_template_names = get_available_template_names()
            if model_prompt_template in available_template_names:
                prompt_template = model_prompt_template

    model_prompt_template_message_update = gr.Markdown.update(
        "", visible=False)
    warning_message = get_warning_message_for_lora_model_and_prompt_template(
        lora_model, prompt_template)
    if warning_message:
        model_prompt_template_message_update = gr.Markdown.update(
            warning_message, visible=True)

    return model_prompt_template_message_update, prompt_template


def update_prompt_preview(prompt_template,
                          variable_0, variable_1, variable_2, variable_3,
                          variable_4, variable_5, variable_6, variable_7):
    variables = [variable_0, variable_1, variable_2, variable_3,
                 variable_4, variable_5, variable_6, variable_7]
    prompter = Prompter(prompt_template)
    prompt = prompter.generate_prompt(variables)
    return gr.Textbox.update(value=prompt)


def inference_ui():
    flagging_dir = os.path.join(Global.data_dir, "flagging", "inference")
    if not os.path.exists(flagging_dir):
        os.makedirs(flagging_dir)

    flag_callback = CSVLogger()
    flag_components = [
        LoggingItem("Base Model"),
        LoggingItem("Adaptor Model"),
        LoggingItem("Type"),
        LoggingItem("Prompt"),
        LoggingItem("Output"),
        LoggingItem("Completed"),
        LoggingItem("Config"),
        LoggingItem("Raw Output"),
        LoggingItem("Max New Tokens"),
        LoggingItem("Prompt Template"),
        LoggingItem("Prompt Template Variables"),
        LoggingItem("Generation Config"),
    ]
    flag_callback.setup(flag_components, flagging_dir)

    def get_flag_callback_args(output_for_flagging_str, flag_type):
        output_for_flagging = json.loads(output_for_flagging_str)
        generation_config = output_for_flagging.get("generation_config", {})
        config = []
        if generation_config.get('do_sample', False):
            config.append(
                f"Temperature: {generation_config.get('temperature')}")
            config.append(f"Top P: {generation_config.get('top_p')}")
            config.append(f"Top K: {generation_config.get('top_k')}")
        num_beams = generation_config.get('num_beams', 1)
        if num_beams > 1:
            config.append(f"Beams: {generation_config.get('num_beams')}")
        config.append(f"RP: {generation_config.get('repetition_penalty')}")
        return [
            output_for_flagging.get("base_model", ""),
            output_for_flagging.get("adaptor_model", ""),
            flag_type,
            output_for_flagging.get("prompt", ""),
            output_for_flagging.get("output", ""),
            str(output_for_flagging.get("completed", "")),
            ", ".join(config),
            output_for_flagging.get("raw_output", ""),
            str(output_for_flagging.get("max_new_tokens", "")),
            output_for_flagging.get("prompt_template", ""),
            json.dumps(output_for_flagging.get(
                "prompt_template_variables", "")),
            json.dumps(output_for_flagging.get("generation_config", "")),
        ]

    def get_flag_filename(output_for_flagging_str):
        output_for_flagging = json.loads(output_for_flagging_str)
        base_model = output_for_flagging.get("base_model", None)
        adaptor_model = output_for_flagging.get("adaptor_model", None)
        if adaptor_model == "None":
            adaptor_model = None
        if not base_model:
            return "log.csv"
        if not adaptor_model:
            return f"log-{base_model}.csv"
        return f"log-{base_model}#{adaptor_model}.csv"

    things_that_might_timeout = []

    with gr.Blocks() as inference_ui_blocks:
        with gr.Row():
            with gr.Column(elem_id="inference_lora_model_group"):
                model_prompt_template_message = gr.Markdown(
                    "", visible=False, elem_id="inference_lora_model_prompt_template_message")
                lora_model = gr.Dropdown(
                    label="LoRA Model",
                    elem_id="inference_lora_model",
                    value="None",
                    allow_custom_value=True,
                )
            prompt_template = gr.Dropdown(
                label="Prompt Template",
                elem_id="inference_prompt_template",
            )
            reload_selections_button = gr.Button(
                "↻",
                elem_id="inference_reload_selections_button"
            )
            reload_selections_button.style(
                full_width=False,
                size="sm")
        with gr.Row():
            with gr.Column():
                with gr.Column(elem_id="inference_prompt_box"):
                    variable_0 = gr.Textbox(
                        lines=2,
                        label="Prompt",
                        placeholder="Tell me about alpecas and llamas.",
                        elem_id="inference_variable_0"
                    )
                    variable_1 = gr.Textbox(
                        lines=2, label="", visible=False, elem_id="inference_variable_1")
                    variable_2 = gr.Textbox(
                        lines=2, label="", visible=False, elem_id="inference_variable_2")
                    variable_3 = gr.Textbox(
                        lines=2, label="", visible=False, elem_id="inference_variable_3")
                    variable_4 = gr.Textbox(
                        lines=2, label="", visible=False, elem_id="inference_variable_4")
                    variable_5 = gr.Textbox(
                        lines=2, label="", visible=False, elem_id="inference_variable_5")
                    variable_6 = gr.Textbox(
                        lines=2, label="", visible=False, elem_id="inference_variable_6")
                    variable_7 = gr.Textbox(
                        lines=2, label="", visible=False, elem_id="inference_variable_7")

                    with gr.Accordion("Preview", open=False, elem_id="inference_preview_prompt_container"):
                        preview_prompt = gr.Textbox(
                            show_label=False, interactive=False, elem_id="inference_preview_prompt")
                        update_prompt_preview_btn = gr.Button(
                            "↻", elem_id="inference_update_prompt_preview_btn")
                        update_prompt_preview_btn.style(size="sm")

                # with gr.Column():
                #     with gr.Row():
                #         generate_btn = gr.Button(
                #             "Generate", variant="primary", label="Generate", elem_id="inference_generate_btn",
                #         )
                #         stop_btn = gr.Button(
                #             "Stop", variant="stop", label="Stop Iterating", elem_id="inference_stop_btn")

                # with gr.Column():
                with gr.Accordion("Options", open=True, elem_id="inference_options_accordion"):
                    temperature = gr.Slider(
                        minimum=0, maximum=2, value=0, step=0.01,
                        label="Temperature",
                        elem_id="inference_temperature"
                    )

                    with gr.Row(elem_classes="inference_options_group"):
                        top_p = gr.Slider(
                            minimum=0, maximum=1, value=0.75, step=0.01,
                            label="Top P",
                            elem_id="inference_top_p"
                        )

                        top_k = gr.Slider(
                            minimum=0, maximum=100, value=40, step=1,
                            label="Top K",
                            elem_id="inference_top_k"
                        )

                    num_beams = gr.Slider(
                        minimum=1, maximum=5, value=2, step=1,
                        label="Beams",
                        elem_id="inference_beams"
                    )

                    repetition_penalty = gr.Slider(
                        minimum=0, maximum=2.5, value=1.2, step=0.01,
                        label="Repetition Penalty",
                        elem_id="inference_repetition_penalty"
                    )

                    max_new_tokens = gr.Slider(
                        minimum=0, maximum=4096, value=128, step=1,
                        label="Max New Tokens",
                        elem_id="inference_max_new_tokens"
                    )

                    with gr.Row(elem_id="inference_options_bottom_group"):
                        stream_output = gr.Checkbox(
                            label="Stream Output",
                            elem_id="inference_stream_output",
                            value=True
                        )
                        show_raw = gr.Checkbox(
                            label="Show Raw",
                            elem_id="inference_show_raw",
                            value=default_show_raw
                        )

                with gr.Column():
                    with gr.Row():
                        generate_btn = gr.Button(
                            "Generate", variant="primary", label="Generate", elem_id="inference_generate_btn",
                        )
                        stop_btn = gr.Button(
                            "Stop", variant="stop", label="Stop Iterating", elem_id="inference_stop_btn")

            with gr.Column(elem_id="inference_output_group_container"):
                with gr.Column(elem_id="inference_output_group"):
                    inference_output = gr.Textbox(
                        lines=inference_output_lines, label="Output", elem_id="inference_output")
                    inference_output.style(show_copy_button=True)

                    with gr.Row(elem_id="inference_flagging_group", variant="panel"):
                        output_for_flagging = gr.Textbox(
                            interactive=False, visible=False,
                            elem_id="inference_output_for_flagging")
                        flag_btn = gr.Button(
                            "Flag", elem_id="inference_flag_btn")
                        flag_up_btn = gr.Button(
                            "πŸ‘", elem_id="inference_flag_up_btn")
                        flag_down_btn = gr.Button(
                            "πŸ‘Ž", elem_id="inference_flag_down_btn")
                        flag_output = gr.Markdown(
                            "", elem_id="inference_flag_output")
                        flag_btn.click(
                            lambda d: (flag_callback.flag(
                                get_flag_callback_args(d, "Flag"),
                                flag_option="Flag",
                                username=None,
                                filename=get_flag_filename(d)
                            ), "")[1],
                            inputs=[output_for_flagging],
                            outputs=[flag_output],
                            preprocess=False)
                        flag_up_btn.click(
                            lambda d: (flag_callback.flag(
                                get_flag_callback_args(d, "πŸ‘"),
                                flag_option="Up Vote",
                                username=None,
                                filename=get_flag_filename(d)
                            ), "")[1],
                            inputs=[output_for_flagging],
                            outputs=[flag_output],
                            preprocess=False)
                        flag_down_btn.click(
                            lambda d: (flag_callback.flag(
                                get_flag_callback_args(d, "πŸ‘Ž"),
                                flag_option="Down Vote",
                                username=None,
                                filename=get_flag_filename(d)
                            ), "")[1],
                            inputs=[output_for_flagging],
                            outputs=[flag_output],
                            preprocess=False)

                    with gr.Accordion(
                            "Raw Output",
                            open=not default_show_raw,
                            visible=default_show_raw,
                            elem_id="inference_inference_raw_output_accordion"
                    ) as raw_output_group:
                        inference_raw_output = gr.Code(
                            label="Raw Output",
                            show_label=False,
                            language="json",
                            interactive=False,
                            elem_id="inference_raw_output")

        reload_selected_models_btn = gr.Button(
            "", elem_id="inference_reload_selected_models_btn")

        show_raw_change_event = show_raw.change(
            fn=lambda show_raw: gr.Accordion.update(visible=show_raw),
            inputs=[show_raw],
            outputs=[raw_output_group])
        things_that_might_timeout.append(show_raw_change_event)

        reload_selections_event = reload_selections_button.click(
            reload_selections,
            inputs=[lora_model, prompt_template],
            outputs=[lora_model, prompt_template],
        )
        things_that_might_timeout.append(reload_selections_event)

        prompt_template_change_event = prompt_template.change(
            fn=handle_prompt_template_change,
            inputs=[prompt_template, lora_model],
            outputs=[
                model_prompt_template_message,
                variable_0, variable_1, variable_2, variable_3, variable_4, variable_5, variable_6, variable_7])
        things_that_might_timeout.append(prompt_template_change_event)

        reload_selected_models_btn_event = reload_selected_models_btn.click(
            fn=handle_prompt_template_change,
            inputs=[prompt_template, lora_model],
            outputs=[
                model_prompt_template_message,
                variable_0, variable_1, variable_2, variable_3, variable_4, variable_5, variable_6, variable_7])
        things_that_might_timeout.append(reload_selected_models_btn_event)

        lora_model_change_event = lora_model.change(
            fn=handle_lora_model_change,
            inputs=[lora_model, prompt_template],
            outputs=[model_prompt_template_message, prompt_template])
        things_that_might_timeout.append(lora_model_change_event)

        generate_event = generate_btn.click(
            fn=prepare_inference,
            inputs=[lora_model],
            outputs=[inference_output,
                     inference_raw_output, output_for_flagging],
        ).then(
            fn=do_inference,
            inputs=[
                lora_model,
                prompt_template,
                variable_0, variable_1, variable_2, variable_3,
                variable_4, variable_5, variable_6, variable_7,
                temperature,
                top_p,
                top_k,
                num_beams,
                repetition_penalty,
                max_new_tokens,
                stream_output,
                show_raw,
            ],
            outputs=[inference_output,
                     inference_raw_output, output_for_flagging],
            api_name="inference"
        )
        stop_btn.click(
            fn=handle_stop_generate,
            inputs=None,
            outputs=None,
            cancels=[generate_event]
        )

        update_prompt_preview_event = update_prompt_preview_btn.click(fn=update_prompt_preview, inputs=[prompt_template,
                                                                                                        variable_0, variable_1, variable_2, variable_3,
                                                                                                        variable_4, variable_5, variable_6, variable_7,], outputs=preview_prompt)
        things_that_might_timeout.append(update_prompt_preview_event)

        stop_timeoutable_btn = gr.Button(
            "stop not-responding elements",
            elem_id="inference_stop_timeoutable_btn",
            elem_classes="foot_stop_timeoutable_btn")
        stop_timeoutable_btn.click(
            fn=None, inputs=None, outputs=None, cancels=things_that_might_timeout)

    inference_ui_blocks.load(_js="""
    function inference_ui_blocks_js() {
      // Auto load options
      setTimeout(function () {
        document.getElementById('inference_reload_selections_button').click();

        // Workaround default value not shown.
        document.querySelector('#inference_lora_model input').value =
          'None';
      }, 100);

      // Add tooltips
      setTimeout(function () {
        tippy('#inference_lora_model', {
          placement: 'bottom-start',
          delay: [500, 0],
          animation: 'scale-subtle',
          content:
            'Select a LoRA model form your data directory, or type in a model name on HF (e.g.: <code>tloen/alpaca-lora-7b</code>).',
          allowHTML: true,
        });

        tippy('#inference_prompt_template', {
          placement: 'bottom-start',
          delay: [500, 0],
          animation: 'scale-subtle',
          content:
            'Templates are loaded from the "templates" folder of your data directory. Be sure to select the template that matches your selected LoRA model to get the best results.',
        });

        tippy('#inference_reload_selections_button', {
          placement: 'bottom-end',
          delay: [500, 0],
          animation: 'scale-subtle',
          content: 'Press to reload LoRA Model and Prompt Template selections.',
        });

        document
          .querySelector('#inference_preview_prompt_container .label-wrap')
          .addEventListener('click', function () {
            tippy('#inference_preview_prompt', {
              placement: 'right',
              delay: [500, 0],
              animation: 'scale-subtle',
              content: 'This is the prompt that will be sent to the language model.',
            });

            const update_btn = document.getElementById(
              'inference_update_prompt_preview_btn'
            );
            if (update_btn) update_btn.click();
          });

        function setTooltipForOptions() {
          tippy('#inference_temperature', {
            placement: 'right',
            delay: [500, 0],
            animation: 'scale-subtle',
            content:
              '<strong>Controls randomness</strong>: Higher values (e.g., <code>1.0</code>) make the model generate more diverse and random outputs. As the temperature approaches zero, the model will become deterministic and repetitive.<br /><i>Setting a value larger then <code>0</code> will enable sampling.</i>',
            allowHTML: true,
          });

          tippy('#inference_top_p', {
            placement: 'right',
            delay: [500, 0],
            animation: 'scale-subtle',
            content:
              'Controls diversity via nucleus sampling: only the tokens whose cumulative probability exceeds <code>top_p</code> are considered. <code>0.5</code> means half of all likelihood-weighted options are considered.<br />Will only take effect if Temperature is set to > 0.',
            allowHTML: true,
          });

          tippy('#inference_top_k', {
            placement: 'right',
            delay: [500, 0],
            animation: 'scale-subtle',
            content:
              'Controls diversity of the generated text by only considering the <code>top_k</code> tokens with the highest probabilities. This method can lead to more focused and coherent outputs by reducing the impact of low probability tokens.<br />Will only take effect if Temperature is set to > 0.',
            allowHTML: true,
          });

          tippy('#inference_beams', {
            placement: 'right',
            delay: [500, 0],
            animation: 'scale-subtle',
            content:
              'Number of candidate sequences explored in parallel during text generation using beam search. A higher value increases the chances of finding high-quality, coherent output, but may slow down the generation process.',
          });

          tippy('#inference_repetition_penalty', {
            placement: 'right',
            delay: [500, 0],
            animation: 'scale-subtle',
            content:
              'Applies a penalty to the probability of tokens that have already been generated, discouraging the model from repeating the same words or phrases. The penalty is applied by dividing the token probability by a factor based on the number of times the token has appeared in the generated text.',
          });

          tippy('#inference_max_new_tokens', {
            placement: 'right',
            delay: [500, 0],
            animation: 'scale-subtle',
            content:
              'Limits the maximum number of tokens generated in a single iteration.',
          });

          tippy('#inference_stream_output', {
            placement: 'right',
            delay: [500, 0],
            animation: 'scale-subtle',
            content:
              'When enabled, generated text will be displayed in real-time as it is being produced by the model, allowing you to observe the text generation process as it unfolds.',
          });
        }
        setTooltipForOptions();

        const inference_options_accordion_toggle = document.querySelector(
          '#inference_options_accordion .label-wrap'
        );
        if (inference_options_accordion_toggle) {
          inference_options_accordion_toggle.addEventListener('click', function () {
            setTooltipForOptions();
          });
        }
      }, 100);

      // Show/hide generate and stop button base on the state.
      setTimeout(function () {
        // Make the '#inference_output > .wrap' element appear
        document.getElementById('inference_stop_btn').click();

        setTimeout(function () {
          const output_wrap_element = document.querySelector(
            '#inference_output > .wrap'
          );
          function handle_output_wrap_element_class_change() {
            if (Array.from(output_wrap_element.classList).includes('hide')) {
              document.getElementById('inference_generate_btn').style.display =
                'block';
              document.getElementById('inference_stop_btn').style.display = 'none';
            } else {
              document.getElementById('inference_generate_btn').style.display =
                'none';
              document.getElementById('inference_stop_btn').style.display = 'block';
            }
          }
          new MutationObserver(function (mutationsList, observer) {
            handle_output_wrap_element_class_change();
          }).observe(output_wrap_element, {
            attributes: true,
            attributeFilter: ['class'],
          });
          handle_output_wrap_element_class_change();
        }, 500);
      }, 0);

      // Reload model selection on possible base model change.
      setTimeout(function () {
        const elem = document.getElementById('main_page_tabs_container');
        if (!elem) return;

        let prevClassList = [];

        new MutationObserver(function (mutationsList, observer) {
          const currentPrevClassList = prevClassList;
          const currentClassList = Array.from(elem.classList);
          prevClassList = Array.from(elem.classList);

          if (!currentPrevClassList.includes('hide')) return;
          if (currentClassList.includes('hide')) return;

          const inference_reload_selected_models_btn_elem = document.getElementById('inference_reload_selected_models_btn');

          if (inference_reload_selected_models_btn_elem) inference_reload_selected_models_btn_elem.click();
        }).observe(elem, {
          attributes: true,
          attributeFilter: ['class'],
        });
      }, 0);

      // Debounced updating the prompt preview.
      setTimeout(function () {
        function debounce(func, wait) {
          let timeout;
          return function (...args) {
            const context = this;
            clearTimeout(timeout);
            const fn = () => {
              if (document.querySelector('#inference_preview_prompt > .wrap:not(.hide)')) {
                // Preview request is still loading, wait for 10ms and try again.
                timeout = setTimeout(fn, 10);
                return;
              }
              func.apply(context, args);
            };
            timeout = setTimeout(fn, wait);
          };
        }

        function update_preview() {
          const update_btn = document.getElementById(
            'inference_update_prompt_preview_btn'
          );
          if (!update_btn) return;

          update_btn.click();
        }

        for (let i = 0; i < 8; i++) {
          const e = document.querySelector(`#inference_variable_${i} textarea`);
          if (!e) return;
          e.addEventListener('input', debounce(update_preview, 500));
        }

        const prompt_template_selector = document.querySelector(
          '#inference_prompt_template .wrap-inner'
        );

        if (prompt_template_selector) {
          new MutationObserver(
            debounce(function () {
              if (prompt_template_selector.classList.contains('showOptions')) return;
              update_preview();
            }, 500)
          ).observe(prompt_template_selector, {
            attributes: true,
            attributeFilter: ['class'],
          });
        }
      }, 100);

      // [WORKAROUND-UI01]
      setTimeout(function () {
        const inference_output_textarea = document.querySelector(
          '#inference_output textarea'
        );
        if (!inference_output_textarea) return;
        const observer = new MutationObserver(function () {
          if (inference_output_textarea.getAttribute('rows') === '1') {
            setTimeout(function () {
              const inference_generate_btn = document.getElementById(
                'inference_generate_btn'
              );
              if (inference_generate_btn) inference_generate_btn.click();
            }, 10);
          }
        });
        observer.observe(inference_output_textarea, {
          attributes: true,
          attributeFilter: ['rows'],
        });
      }, 100);
    }
    """)