Spaces:
Runtime error
Runtime error
import importlib | |
import os | |
import sys | |
import gc | |
import json | |
import re | |
from transformers import ( | |
AutoModelForCausalLM, AutoModel, | |
AutoTokenizer, LlamaTokenizer | |
) | |
from .config import Config | |
from .globals import Global | |
from .lib.get_device import get_device | |
def get_torch(): | |
return importlib.import_module('torch') | |
def get_peft_model_class(): | |
return importlib.import_module('peft').PeftModel | |
def get_new_base_model(base_model_name): | |
if Config.ui_dev_mode: | |
return | |
if Global.is_train_starting or Global.is_training: | |
raise Exception("Cannot load new base model while training.") | |
if Global.new_base_model_that_is_ready_to_be_used: | |
if Global.name_of_new_base_model_that_is_ready_to_be_used == base_model_name: | |
model = Global.new_base_model_that_is_ready_to_be_used | |
Global.new_base_model_that_is_ready_to_be_used = None | |
Global.name_of_new_base_model_that_is_ready_to_be_used = None | |
return model | |
else: | |
Global.new_base_model_that_is_ready_to_be_used = None | |
Global.name_of_new_base_model_that_is_ready_to_be_used = None | |
clear_cache() | |
model_class = AutoModelForCausalLM | |
from_tf = False | |
force_download = False | |
has_tried_force_download = False | |
while True: | |
try: | |
model = _get_model_from_pretrained( | |
model_class, base_model_name, from_tf=from_tf, force_download=force_download) | |
break | |
except Exception as e: | |
if 'from_tf' in str(e): | |
print( | |
f"Got error while loading model {base_model_name} with AutoModelForCausalLM: {e}.") | |
print("Retrying with from_tf=True...") | |
from_tf = True | |
force_download = False | |
elif model_class == AutoModelForCausalLM: | |
print( | |
f"Got error while loading model {base_model_name} with AutoModelForCausalLM: {e}.") | |
print("Retrying with AutoModel...") | |
model_class = AutoModel | |
force_download = False | |
else: | |
if has_tried_force_download: | |
raise e | |
print( | |
f"Got error while loading model {base_model_name}: {e}.") | |
print("Retrying with force_download=True...") | |
model_class = AutoModelForCausalLM | |
from_tf = False | |
force_download = True | |
has_tried_force_download = True | |
tokenizer = get_tokenizer(base_model_name) | |
if re.match("[^/]+/llama", base_model_name): | |
model.config.pad_token_id = tokenizer.pad_token_id = 0 | |
model.config.bos_token_id = tokenizer.bos_token_id = 1 | |
model.config.eos_token_id = tokenizer.eos_token_id = 2 | |
return model | |
def _get_model_from_pretrained(model_class, model_name, from_tf=False, force_download=False): | |
torch = get_torch() | |
device = get_device() | |
if device == "cuda": | |
return model_class.from_pretrained( | |
model_name, | |
load_in_8bit=Config.load_8bit, | |
torch_dtype=torch.float16, | |
# device_map="auto", | |
# ? https://github.com/tloen/alpaca-lora/issues/21 | |
device_map={'': 0}, | |
from_tf=from_tf, | |
force_download=force_download, | |
trust_remote_code=Config.trust_remote_code | |
) | |
elif device == "mps": | |
return model_class.from_pretrained( | |
model_name, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
from_tf=from_tf, | |
force_download=force_download, | |
trust_remote_code=Config.trust_remote_code | |
) | |
else: | |
return model_class.from_pretrained( | |
model_name, | |
device_map={"": device}, | |
low_cpu_mem_usage=True, | |
from_tf=from_tf, | |
force_download=force_download, | |
trust_remote_code=Config.trust_remote_code | |
) | |
def get_tokenizer(base_model_name): | |
if Config.ui_dev_mode: | |
return | |
if Global.is_train_starting or Global.is_training: | |
raise Exception("Cannot load new base model while training.") | |
loaded_tokenizer = Global.loaded_tokenizers.get(base_model_name) | |
if loaded_tokenizer: | |
return loaded_tokenizer | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
base_model_name, | |
trust_remote_code=Config.trust_remote_code | |
) | |
except Exception as e: | |
if 'LLaMATokenizer' in str(e): | |
tokenizer = LlamaTokenizer.from_pretrained( | |
base_model_name, | |
trust_remote_code=Config.trust_remote_code | |
) | |
else: | |
raise e | |
Global.loaded_tokenizers.set(base_model_name, tokenizer) | |
return tokenizer | |
def get_model( | |
base_model_name, | |
peft_model_name=None): | |
if Config.ui_dev_mode: | |
return | |
if Global.is_train_starting or Global.is_training: | |
raise Exception("Cannot load new base model while training.") | |
torch = get_torch() | |
if peft_model_name == "None": | |
peft_model_name = None | |
model_key = base_model_name | |
if peft_model_name: | |
model_key = f"{base_model_name}//{peft_model_name}" | |
loaded_model = Global.loaded_models.get(model_key) | |
if loaded_model: | |
return loaded_model | |
peft_model_name_or_path = peft_model_name | |
if peft_model_name: | |
lora_models_directory_path = os.path.join( | |
Config.data_dir, "lora_models") | |
possible_lora_model_path = os.path.join( | |
lora_models_directory_path, peft_model_name) | |
if os.path.isdir(possible_lora_model_path): | |
peft_model_name_or_path = possible_lora_model_path | |
possible_model_info_json_path = os.path.join( | |
possible_lora_model_path, "info.json") | |
if os.path.isfile(possible_model_info_json_path): | |
try: | |
with open(possible_model_info_json_path, "r") as file: | |
json_data = json.load(file) | |
possible_hf_model_name = json_data.get("hf_model_name") | |
if possible_hf_model_name and json_data.get("load_from_hf"): | |
peft_model_name_or_path = possible_hf_model_name | |
except Exception as e: | |
raise ValueError( | |
"Error reading model info from {possible_model_info_json_path}: {e}") | |
Global.loaded_models.prepare_to_set() | |
clear_cache() | |
model = get_new_base_model(base_model_name) | |
if peft_model_name: | |
device = get_device() | |
PeftModel = get_peft_model_class() | |
if device == "cuda": | |
model = PeftModel.from_pretrained( | |
model, | |
peft_model_name_or_path, | |
torch_dtype=torch.float16, | |
# ? https://github.com/tloen/alpaca-lora/issues/21 | |
device_map={'': 0}, | |
) | |
elif device == "mps": | |
model = PeftModel.from_pretrained( | |
model, | |
peft_model_name_or_path, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
model = PeftModel.from_pretrained( | |
model, | |
peft_model_name_or_path, | |
device_map={"": device}, | |
) | |
if re.match("[^/]+/llama", base_model_name): | |
model.config.pad_token_id = get_tokenizer( | |
base_model_name).pad_token_id = 0 | |
model.config.bos_token_id = 1 | |
model.config.eos_token_id = 2 | |
if not Config.load_8bit: | |
model.half() # seems to fix bugs for some users. | |
model.eval() | |
if torch.__version__ >= "2" and sys.platform != "win32": | |
model = torch.compile(model) | |
Global.loaded_models.set(model_key, model) | |
clear_cache() | |
return model | |
def prepare_base_model(base_model_name=Config.default_base_model_name): | |
Global.new_base_model_that_is_ready_to_be_used = get_new_base_model( | |
base_model_name) | |
Global.name_of_new_base_model_that_is_ready_to_be_used = base_model_name | |
def clear_cache(): | |
gc.collect() | |
torch = get_torch() | |
# if not shared.args.cpu: # will not be running on CPUs anyway | |
with torch.no_grad(): | |
torch.cuda.empty_cache() | |
def unload_models(): | |
Global.loaded_models.clear() | |
Global.loaded_tokenizers.clear() | |
clear_cache() | |