zetavg
update
cff173a
raw
history blame
5.85 kB
import importlib
import os
import subprocess
import psutil
import math
from typing import Any, Dict, List, Optional, Tuple, Union
from numba import cuda
import nvidia_smi
from .dynamic_import import dynamic_import
from .config import Config
from .utils.lru_cache import LRUCache
from .utils.eta_predictor import ETAPredictor
class Global:
"""
A singleton class holding global states.
"""
version: Union[str, None] = None
base_model_name: str = ""
tokenizer_name: Union[str, None] = None
# Functions
inference_generate_fn: Any
finetune_train_fn: Any
# Training Control
should_stop_training: bool = False
# Training Status
is_train_starting: bool = False
is_training: bool = False
train_started_at: float = 0.0
training_error_message: Union[str, None] = None
training_error_detail: Union[str, None] = None
training_total_epochs: int = 0
training_current_epoch: float = 0.0
training_total_steps: int = 0
training_current_step: int = 0
training_progress: float = 0.0
training_log_history: List[Any] = []
training_status_text: str = ""
training_eta_predictor = ETAPredictor()
training_eta: Union[int, None] = None
train_output: Union[None, Any] = None
train_output_str: Union[None, str] = None
training_params_info_text: str = ""
# Generation Control
should_stop_generating: bool = False
generation_force_stopped_at: Union[float, None] = None
# Model related
loaded_models = LRUCache(1)
loaded_tokenizers = LRUCache(1)
new_base_model_that_is_ready_to_be_used = None
name_of_new_base_model_that_is_ready_to_be_used = None
# GPU Info
gpu_cc = None # GPU compute capability
gpu_sms = None # GPU total number of SMs
gpu_total_cores = None # GPU total cores
gpu_total_memory = None
def initialize_global():
Global.base_model_name = Config.default_base_model_name
commit_hash = get_git_commit_hash()
if commit_hash:
Global.version = commit_hash[:8]
if not Config.ui_dev_mode:
ModelLRUCache = dynamic_import('.utils.model_lru_cache').ModelLRUCache
Global.loaded_models = ModelLRUCache(1)
Global.inference_generate_fn = dynamic_import('.lib.inference').generate
Global.finetune_train_fn = dynamic_import('.lib.finetune').train
load_gpu_info()
def get_package_dir():
current_file_path = os.path.abspath(__file__)
parent_directory_path = os.path.dirname(current_file_path)
return os.path.abspath(parent_directory_path)
def get_git_commit_hash():
try:
original_cwd = os.getcwd()
project_dir = get_package_dir()
try:
os.chdir(project_dir)
commit_hash = subprocess.check_output(
['git', 'rev-parse', 'HEAD']).strip().decode('utf-8')
return commit_hash
except Exception as e:
print(f"Cannot get git commit hash: {e}")
finally:
os.chdir(original_cwd)
except Exception as e:
print(f"Cannot get git commit hash: {e}")
def load_gpu_info():
# cuda = importlib.import_module('numba').cuda
# nvidia_smi = importlib.import_module('nvidia_smi')
print("")
try:
cc_cores_per_SM_dict = {
(2, 0): 32,
(2, 1): 48,
(3, 0): 192,
(3, 5): 192,
(3, 7): 192,
(5, 0): 128,
(5, 2): 128,
(6, 0): 64,
(6, 1): 128,
(7, 0): 64,
(7, 5): 64,
(8, 0): 64,
(8, 6): 128,
(8, 9): 128,
(9, 0): 128
}
# the above dictionary should result in a value of "None" if a cc match
# is not found. The dictionary needs to be extended as new devices become
# available, and currently does not account for all Jetson devices
device = cuda.get_current_device()
device_sms = getattr(device, 'MULTIPROCESSOR_COUNT')
device_cc = device.compute_capability
cores_per_sm = cc_cores_per_SM_dict.get(device_cc)
total_cores = cores_per_sm*device_sms
print("GPU compute capability: ", device_cc)
print("GPU total number of SMs: ", device_sms)
print("GPU total cores: ", total_cores)
Global.gpu_cc = device_cc
Global.gpu_sms = device_sms
Global.gpu_total_cores = total_cores
nvidia_smi.nvmlInit()
handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)
info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
total_memory = info.total
total_memory_mb = total_memory / (1024 ** 2)
total_memory_gb = total_memory / (1024 ** 3)
# Print the memory size
print(
f"GPU total memory: {total_memory} bytes ({total_memory_mb:.2f} MB) ({total_memory_gb:.2f} GB)")
Global.gpu_total_memory = total_memory
available_cpu_ram = psutil.virtual_memory().available
available_cpu_ram_mb = available_cpu_ram / (1024 ** 2)
available_cpu_ram_gb = available_cpu_ram / (1024 ** 3)
print(
f"CPU available memory: {available_cpu_ram} bytes ({available_cpu_ram_mb:.2f} MB) ({available_cpu_ram_gb:.2f} GB)")
preserve_loaded_models_count = math.floor(
(available_cpu_ram * 0.8) / total_memory) - 1
if preserve_loaded_models_count > 1:
ModelLRUCache = dynamic_import('.utils.model_lru_cache').ModelLRUCache
print(
f"Will keep {preserve_loaded_models_count} offloaded models in CPU RAM.")
Global.loaded_models = ModelLRUCache(preserve_loaded_models_count)
Global.loaded_tokenizers = LRUCache(preserve_loaded_models_count)
except Exception as e:
print(f"Notice: cannot get GPU info: {e}")
print("")