zetavg
split finetune ui
a5e11b9 unverified
raw
history blame
5.67 kB
import os
import traceback
import re
import gradio as gr
import math
from ...config import Config
from ...utils.prompter import Prompter
from .data_processing import get_data_from_input
def refresh_preview(
template,
load_dataset_from,
dataset_from_data_dir,
dataset_text,
dataset_text_format,
dataset_plain_text_input_variables_separator,
dataset_plain_text_input_and_output_separator,
dataset_plain_text_data_separator,
max_preview_count,
):
try:
prompter = Prompter(template)
variable_names = prompter.get_variable_names()
data = get_data_from_input(
load_dataset_from=load_dataset_from,
dataset_text=dataset_text,
dataset_text_format=dataset_text_format,
dataset_plain_text_input_variables_separator=dataset_plain_text_input_variables_separator,
dataset_plain_text_input_and_output_separator=dataset_plain_text_input_and_output_separator,
dataset_plain_text_data_separator=dataset_plain_text_data_separator,
dataset_from_data_dir=dataset_from_data_dir,
prompter=prompter
)
train_data = prompter.get_train_data_from_dataset(
data, max_preview_count)
train_data = train_data[:max_preview_count]
data_count = len(data)
headers = ['Prompt', 'Completion']
preview_data = [
[item.get("prompt", ""), item.get("completion", "")]
for item in train_data
]
if not prompter.template_module:
variable_names = prompter.get_variable_names()
headers += [f"Variable: {variable_name}" for variable_name in variable_names]
variables = [
[item.get(f"_var_{name}", "") for name in variable_names]
for item in train_data
]
preview_data = [d + v for d, v in zip(preview_data, variables)]
preview_info_message = f"The dataset has about {data_count} item(s)."
if data_count > max_preview_count:
preview_info_message += f" Previewing the first {max_preview_count}."
info_message = f"about {data_count} item(s)."
if load_dataset_from == "Data Dir":
info_message = "This dataset contains about " + info_message
update_message = gr.Markdown.update(info_message, visible=True)
return (
gr.Dataframe.update(
value={'data': preview_data, 'headers': headers}),
gr.Markdown.update(preview_info_message),
update_message,
update_message
)
except Exception as e:
update_message = gr.Markdown.update(
f"<span class=\"finetune_dataset_error_message\">Error: {e}.</span>",
visible=True)
return (
gr.Dataframe.update(value={'data': [], 'headers': []}),
gr.Markdown.update(
"Set the dataset in the \"Prepare\" tab, then preview it here."),
update_message,
update_message
)
def refresh_dataset_items_count(
template,
load_dataset_from,
dataset_from_data_dir,
dataset_text,
dataset_text_format,
dataset_plain_text_input_variables_separator,
dataset_plain_text_input_and_output_separator,
dataset_plain_text_data_separator,
max_preview_count,
):
try:
prompter = Prompter(template)
data = get_data_from_input(
load_dataset_from=load_dataset_from,
dataset_text=dataset_text,
dataset_text_format=dataset_text_format,
dataset_plain_text_input_variables_separator=dataset_plain_text_input_variables_separator,
dataset_plain_text_input_and_output_separator=dataset_plain_text_input_and_output_separator,
dataset_plain_text_data_separator=dataset_plain_text_data_separator,
dataset_from_data_dir=dataset_from_data_dir,
prompter=prompter
)
train_data = prompter.get_train_data_from_dataset(
data)
data_count = len(train_data)
preview_info_message = f"The dataset contains {data_count} item(s)."
if data_count > max_preview_count:
preview_info_message += f" Previewing the first {max_preview_count}."
info_message = f"{data_count} item(s)."
if load_dataset_from == "Data Dir":
info_message = "This dataset contains " + info_message
update_message = gr.Markdown.update(info_message, visible=True)
return (
gr.Markdown.update(preview_info_message),
update_message,
update_message,
gr.Slider.update(maximum=math.floor(data_count / 2))
)
except Exception as e:
update_message = gr.Markdown.update(
f"<span class=\"finetune_dataset_error_message\">Error: {e}.</span>",
visible=True)
trace = traceback.format_exc()
traces = [s.strip() for s in re.split("\n * File ", trace)]
traces_to_show = [s for s in traces if os.path.join(
Config.data_dir, "templates") in s]
traces_to_show = [re.sub(" *\n *", ": ", s) for s in traces_to_show]
if len(traces_to_show) > 0:
update_message = gr.Markdown.update(
f"<span class=\"finetune_dataset_error_message\">Error: {e} ({','.join(traces_to_show)}).</span>",
visible=True)
return (
gr.Markdown.update(
"Set the dataset in the \"Prepare\" tab, then preview it here."),
update_message,
update_message,
gr.Slider.update(maximum=1)
)