Spaces:
Runtime error
Runtime error
""" | |
A dedicated helper to manage templates and prompt building. | |
From https://github.com/tloen/alpaca-lora/blob/main/utils/prompter.py | |
""" | |
import json | |
import os.path as osp | |
import importlib | |
import itertools | |
from typing import Union, List, Dict | |
from ..config import Config | |
from ..globals import Global | |
class Prompter(object): | |
__slots__ = ("template_name", "template", "template_module", "_verbose") | |
def __init__(self, template_name: str = "", verbose: bool = False): | |
self._verbose = verbose | |
if not template_name: | |
template_name = "None" | |
if template_name == "None": | |
self.template_name = "None" | |
return | |
self.template_name = template_name | |
self.template_module = None | |
base_filename, ext = osp.splitext(template_name) | |
if ext == "": | |
filename = base_filename + ".json" | |
else: | |
filename = base_filename + ext | |
file_path = osp.join(Config.data_dir, "templates", filename) | |
if not osp.exists(file_path): | |
raise ValueError(f"Can't read {file_path}") | |
if ext == ".py": | |
importlib_util = importlib.util # type: ignore | |
template_module_spec = importlib_util.spec_from_file_location( | |
"template_module", file_path) | |
template_module = importlib_util.module_from_spec( | |
template_module_spec) | |
template_module_spec.loader.exec_module(template_module) | |
self.template_module = template_module | |
if not hasattr(template_module, "variables"): | |
raise ValueError( | |
"The template module does not have a \"variables\" attribute.") | |
self.template = { | |
'variables': template_module.variables | |
} | |
if hasattr(template_module, "response_split"): | |
self.template["response_split"] = template_module.response_split | |
return | |
with open(file_path) as fp: | |
self.template = json.load(fp) | |
if self._verbose: | |
print( | |
f"Using prompt template {template_name}: {self.template['description']}" | |
) | |
def generate_prompt( | |
self, | |
variables: Union[Dict[str, str], List[Union[None, str]]] = [], | |
# instruction: str, | |
# input: Union[None, str] = None, | |
label: Union[None, str] = None, | |
) -> str: | |
if self.template_name == "None": | |
if type(variables) == list: | |
res = get_val(variables, 0, "") | |
elif type(variables) == dict: | |
res = variables.get("prompt", "") | |
else: | |
raise ValueError(f"Invalid variables type: {type(variables)}") | |
elif "variables" in self.template: | |
variable_names = self.template.get("variables") | |
# if type(variable_names) != list: | |
# raise ValueError(f"Invalid variable_names type {type(variable_names)} defined in template {self.template_name}, expecting list.") | |
if self.template_module: | |
if type(variables) == list: | |
variables = {k: v for k, v in zip( | |
variable_names, variables)} | |
res = self.template_module.get_prompt(variables) | |
else: | |
if type(variables) == dict: | |
variables = [variables.get(name, None) | |
for name in variable_names] | |
if "default" not in self.template: | |
raise ValueError( | |
f"The template {self.template_name} has \"variables\" defined but does not has a default prompt defined. Please do it like: '\"default\": \"prompt_with_instruction\"' to handle cases when a matching prompt can't be found.") | |
default_prompt_name = self.template.get("default") | |
if default_prompt_name not in self.template: | |
raise ValueError( | |
f"The template {self.template_name} has \"default\" set to \"{default_prompt_name}\" but it's not defined. Please do it like: '\"{default_prompt_name}\": \"...\".") | |
prompt_name = get_prompt_name(variables, variable_names) | |
prompt_template = self.template.get(default_prompt_name) | |
if prompt_name in self.template: | |
prompt_template = self.template.get(prompt_name) | |
res = prompt_template.format( | |
**variables_to_dict(variables, variable_names)) | |
else: | |
if type(variables) == dict: | |
instruction = variables.get("instruction", "") | |
input = variables.get("input") | |
else: | |
instruction = get_val(variables, 0, "") | |
input = get_val(variables, 1) | |
# returns the full prompt from instruction and optional input | |
# if a label (=response, =output) is provided, it's also appended. | |
if input: | |
res = self.template["prompt_input"].format( | |
instruction=instruction, input=input | |
) | |
else: | |
res = self.template["prompt_no_input"].format( | |
instruction=instruction | |
) | |
if label: | |
res = f"{res}{label}" | |
if self._verbose: | |
print(res) | |
return res | |
def get_response(self, output: str) -> str: | |
if self.template_name == "None": | |
return output | |
splitted_output = output.split(self.template["response_split"]) | |
# if len(splitted_output) <= 1: | |
# return output.strip() | |
return self.template["response_split"].join( | |
splitted_output[1:] | |
).strip() | |
def get_variable_names(self) -> List[str]: | |
if self.template_name == "None": | |
return ["prompt"] | |
elif "variables" in self.template: | |
return self.template['variables'] | |
else: | |
return ["instruction", "input"] | |
def get_train_data_from_dataset(self, data, only_first_n_items=None): | |
if self.template_module: | |
if hasattr(self.template_module, | |
"get_train_data_list_from_dataset"): | |
data = self.template_module.get_train_data_list_from_dataset( | |
data) | |
if only_first_n_items: | |
data = data[:only_first_n_items] | |
return list(itertools.chain(*list( | |
map(self.template_module.get_train_data, data) | |
))) | |
if only_first_n_items: | |
data = data[:only_first_n_items] | |
data = process_json_dataset(data) | |
train_data = [ | |
{ | |
'prompt': self.generate_prompt(d['variables']), | |
'completion': d['output'], | |
**{"_var_" + k: v for k, v in d['variables'].items()} | |
} | |
for d in data] | |
return train_data | |
def get_val(arr, index, default=None): | |
return arr[index] if -len(arr) <= index < len(arr) else default | |
def get_prompt_name(variables, variable_names): | |
result = [y for x, y in zip( | |
variables, variable_names) if x not in (None, '')] | |
return "prompt_with_" + '_'.join(result) | |
def variables_to_dict(variables, variable_names): | |
return { | |
key: (variables[i] if i < len(variables) | |
and variables[i] is not None else '') | |
for i, key in enumerate(variable_names) | |
} | |
def process_json_dataset(data): | |
if not isinstance(data, list): | |
raise ValueError("The dataset is not an array of objects.") | |
first_item = get_val_from_arr(data, 0, None) | |
if first_item is None: | |
raise ValueError("The dataset is empty.") | |
if not isinstance(first_item, dict): | |
raise ValueError("The dataset is not an array of objects.") | |
# Convert OpenAI fine-tuning dataset to LLaMA LoRA style | |
if "completion" in first_item and "output" not in first_item: | |
data = [ | |
{"output" if k == "completion" else k: v for k, v in d.items()} | |
for d in data] | |
first_item = get_val_from_arr(data, 0, None) | |
# Flatten Stanford Alpaca style instances | |
if "instances" in first_item and isinstance(first_item["instances"], list): | |
data = [ | |
{"output" if k == "completion" else k: v for k, v in d.items()} | |
for d in data] | |
flattened_data = [] | |
for item in data: | |
for instance in item["instances"]: | |
d = {k: v for k, v in item.items() if k != "instances"} | |
d.update(instance) | |
flattened_data.append(d) | |
data = flattened_data | |
first_item = get_val_from_arr(data, 0, None) | |
if "output" not in first_item: | |
raise ValueError( | |
"The data does not contains an \"output\" or \"completion\".") | |
# Put all variables under the "variables" key if it does not exists | |
if "variables" not in first_item: | |
data = [ | |
{ | |
"variables": | |
{k: v for k, v in d.items() if k != "output"}, | |
"output": | |
d["output"] | |
} | |
for d in data | |
] | |
return data | |
def get_val_from_arr(arr, index, default=None): | |
return arr[index] if -len(arr) <= index < len(arr) else default | |