Spaces:
Runtime error
Runtime error
import time | |
import traceback | |
from collections import deque | |
from typing import Optional | |
class ETAPredictor: | |
def __init__(self, lookback_minutes: int = 180): | |
self.lookback_seconds = lookback_minutes * 60 # convert minutes to seconds | |
self.data = deque() | |
def _cleanup_old_data(self): | |
current_time = time.time() | |
while self.data and current_time - self.data[0][1] > self.lookback_seconds: | |
self.data.popleft() | |
def predict_eta( | |
self, current_step: int, total_steps: int | |
) -> Optional[int]: | |
try: | |
current_time = time.time() | |
# Calculate dynamic log interval based on current logged data | |
log_interval = 1 | |
if len(self.data) > 100: | |
log_interval = 10 | |
# Only log data if last log is at least log_interval seconds ago | |
if len(self.data) < 1 or current_time - self.data[-1][1] >= log_interval: | |
self.data.append((current_step, current_time)) | |
self._cleanup_old_data() | |
# Only predict if we have enough data | |
if len(self.data) < 2 or self.data[-1][1] - self.data[0][1] < 1: | |
return None | |
first_step, first_time = self.data[0] | |
steps_completed = current_step - first_step | |
time_elapsed = current_time - first_time | |
if steps_completed == 0: | |
return None | |
time_per_step = time_elapsed / steps_completed | |
steps_remaining = total_steps - current_step | |
remaining_seconds = steps_remaining * time_per_step | |
eta_unix_timestamp = current_time + remaining_seconds | |
return int(eta_unix_timestamp) | |
except Exception as e: | |
print("Error predicting ETA:", e) | |
traceback.print_exc() | |
return None | |