zetavg
support resume_from_checkpoint
38fb491
raw
history blame
12 kB
import os
import sys
import importlib
from typing import Any, List
import json
import fire
import torch
import transformers
from datasets import Dataset, load_dataset
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import LlamaForCausalLM, LlamaTokenizer
def train(
# model/data params
base_model: Any,
tokenizer: Any,
output_dir: str,
train_dataset_data: List[Any],
# training hyperparams
micro_batch_size: int = 4,
gradient_accumulation_steps: int = 32,
num_train_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 2000,
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # faster, but produces an odd training loss curve
# either training checkpoint or final adapter
resume_from_checkpoint = None,
save_steps: int = 200,
save_total_limit: int = 3,
logging_steps: int = 10,
# logging
callbacks: List[Any] = [],
# wandb params
wandb_api_key = None,
wandb_project: str = "",
wandb_group = None,
wandb_run_name: str = "",
wandb_tags: List[str] = [],
wandb_watch: str = "false", # options: false | gradients | all
wandb_log_model: str = "true", # options: false | true
):
# for logging
finetune_args = {
'micro_batch_size': micro_batch_size,
'gradient_accumulation_steps': gradient_accumulation_steps,
'num_train_epochs': num_train_epochs,
'learning_rate': learning_rate,
'cutoff_len': cutoff_len,
'val_set_size': val_set_size,
'lora_r': lora_r,
'lora_alpha': lora_alpha,
'lora_dropout': lora_dropout,
'lora_target_modules': lora_target_modules,
'train_on_inputs': train_on_inputs,
'group_by_length': group_by_length,
'save_steps': save_steps,
'save_total_limit': save_total_limit,
'logging_steps': logging_steps,
}
if val_set_size and val_set_size > 0:
finetune_args['val_set_size'] = val_set_size
if resume_from_checkpoint:
finetune_args['resume_from_checkpoint'] = resume_from_checkpoint
wandb = None
if wandb_api_key:
os.environ["WANDB_API_KEY"] = wandb_api_key
# wandb: WARNING Changes to your `wandb` environment variables will be ignored because your `wandb` session has already started. For more information on how to modify your settings with `wandb.init()` arguments, please refer to https://wandb.me/wandb-init.
# if wandb_project:
# os.environ["WANDB_PROJECT"] = wandb_project
# if wandb_run_name:
# os.environ["WANDB_RUN_NAME"] = wandb_run_name
if wandb_watch:
os.environ["WANDB_WATCH"] = wandb_watch
if wandb_log_model:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
use_wandb = (wandb_project and len(wandb_project) > 0) or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
if use_wandb:
os.environ['WANDB_MODE'] = "online"
wandb = importlib.import_module("wandb")
wandb.init(
project=wandb_project,
resume="auto",
group=wandb_group,
name=wandb_run_name,
tags=wandb_tags,
reinit=True,
magic=True,
config={'finetune_args': finetune_args},
# id=None # used for resuming
)
else:
os.environ['WANDB_MODE'] = "disabled"
if os.path.exists(output_dir):
if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
raise ValueError(
f"The output directory already exists and is not empty. ({output_dir})")
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
model = base_model
if isinstance(model, str):
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,
)
if isinstance(tokenizer, str):
tokenizer = LlamaTokenizer.from_pretrained(tokenizer)
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = data_point["prompt"] + data_point["completion"]
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = data_point["prompt"]
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
# will fail anyway.
try:
model = prepare_model_for_int8_training(model)
except Exception as e:
print(
f"Got error while running prepare_model_for_int8_training(model), maybe the model has already be prepared. Original error: {e}.")
# model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
# If train_dataset_data is a list, convert it to datasets.Dataset
if isinstance(train_dataset_data, list):
with open(os.path.join(output_dir, "train_data_samples.json"), 'w') as file:
json.dump(list(train_dataset_data[:100]), file, indent=2)
train_dataset_data = Dataset.from_list(train_dataset_data)
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = (
False # So the trainer won't try loading its state
)
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
raise ValueError(f"Checkpoint {checkpoint_name} not found")
# Be more transparent about the % of trainable params.
model.print_trainable_parameters()
if val_set_size > 0:
train_val = train_dataset_data.train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = train_dataset_data.shuffle().map(generate_and_tokenize_prompt)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_train_epochs,
learning_rate=learning_rate,
fp16=True,
logging_steps=logging_steps,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=save_steps if val_set_size > 0 else None,
save_steps=save_steps,
output_dir=output_dir,
save_total_limit=save_total_limit,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
callbacks=callbacks,
)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, "trainer_args.json"), 'w') as trainer_args_json_file:
json.dump(trainer.args.to_dict(), trainer_args_json_file, indent=2)
with open(os.path.join(output_dir, "finetune_args.json"), 'w') as finetune_args_json_file:
json.dump(finetune_args, finetune_args_json_file, indent=2)
# Not working, will only give us ["prompt", "completion", "input_ids", "attention_mask", "labels"]
# if train_data:
# with open(os.path.join(output_dir, "train_dataset_samples.json"), 'w') as file:
# json.dump(list(train_data[:100]), file, indent=2)
# if val_data:
# with open(os.path.join(output_dir, "eval_dataset_samples.json"), 'w') as file:
# json.dump(list(val_data[:100]), file, indent=2)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
train_output = trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
print(f"Model saved to {output_dir}.")
with open(os.path.join(output_dir, "trainer_log_history.jsonl"), 'w') as trainer_log_history_jsonl_file:
trainer_log_history = "\n".join(
[json.dumps(line) for line in trainer.state.log_history])
trainer_log_history_jsonl_file.write(trainer_log_history)
with open(os.path.join(output_dir, "train_output.json"), 'w') as train_output_json_file:
json.dump(train_output, train_output_json_file, indent=2)
if use_wandb and wandb:
wandb.finish()
return train_output