Spaces:
Runtime error
Runtime error
zetavg
commited on
Commit
·
0537112
1
Parent(s):
570c043
support .py prompt template
Browse files- llama_lora/lib/finetune.py +11 -1
- llama_lora/ui/finetune_ui.py +107 -161
- llama_lora/utils/data.py +1 -1
- llama_lora/utils/prompter.py +139 -22
llama_lora/lib/finetune.py
CHANGED
@@ -162,6 +162,8 @@ def train(
|
|
162 |
|
163 |
# If train_dataset_data is a list, convert it to datasets.Dataset
|
164 |
if isinstance(train_dataset_data, list):
|
|
|
|
|
165 |
train_dataset_data = Dataset.from_list(train_dataset_data)
|
166 |
|
167 |
if resume_from_checkpoint:
|
@@ -221,7 +223,7 @@ def train(
|
|
221 |
optim="adamw_torch",
|
222 |
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
223 |
save_strategy="steps",
|
224 |
-
eval_steps=
|
225 |
save_steps=save_steps,
|
226 |
output_dir=output_dir,
|
227 |
save_total_limit=save_total_limit,
|
@@ -260,6 +262,14 @@ def train(
|
|
260 |
}
|
261 |
json.dump(finetune_params, finetune_params_json_file, indent=2)
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
model.config.use_cache = False
|
264 |
|
265 |
old_state_dict = model.state_dict
|
|
|
162 |
|
163 |
# If train_dataset_data is a list, convert it to datasets.Dataset
|
164 |
if isinstance(train_dataset_data, list):
|
165 |
+
with open(os.path.join(output_dir, "train_data_samples.json"), 'w') as file:
|
166 |
+
json.dump(list(train_dataset_data[:100]), file, indent=2)
|
167 |
train_dataset_data = Dataset.from_list(train_dataset_data)
|
168 |
|
169 |
if resume_from_checkpoint:
|
|
|
223 |
optim="adamw_torch",
|
224 |
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
225 |
save_strategy="steps",
|
226 |
+
eval_steps=save_steps if val_set_size > 0 else None,
|
227 |
save_steps=save_steps,
|
228 |
output_dir=output_dir,
|
229 |
save_total_limit=save_total_limit,
|
|
|
262 |
}
|
263 |
json.dump(finetune_params, finetune_params_json_file, indent=2)
|
264 |
|
265 |
+
# Not working, will only give us ["prompt", "completion", "input_ids", "attention_mask", "labels"]
|
266 |
+
# if train_data:
|
267 |
+
# with open(os.path.join(output_dir, "train_dataset_samples.json"), 'w') as file:
|
268 |
+
# json.dump(list(train_data[:100]), file, indent=2)
|
269 |
+
# if val_data:
|
270 |
+
# with open(os.path.join(output_dir, "eval_dataset_samples.json"), 'w') as file:
|
271 |
+
# json.dump(list(val_data[:100]), file, indent=2)
|
272 |
+
|
273 |
model.config.use_cache = False
|
274 |
|
275 |
old_state_dict = model.state_dict
|
llama_lora/ui/finetune_ui.py
CHANGED
@@ -79,56 +79,50 @@ def load_sample_dataset_to_text_input(format):
|
|
79 |
return gr.Code.update(value=sample_plain_text_value)
|
80 |
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
{k: v for k, v in d.items() if k != "output"},
|
127 |
-
"output":
|
128 |
-
d["output"]
|
129 |
-
}
|
130 |
-
for d in data
|
131 |
-
]
|
132 |
return data
|
133 |
|
134 |
|
@@ -144,75 +138,59 @@ def refresh_preview(
|
|
144 |
preview_show_actual_prompt,
|
145 |
):
|
146 |
try:
|
147 |
-
max_preview_count =
|
148 |
prompter = Prompter(template)
|
149 |
variable_names = prompter.get_variable_names()
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
try:
|
162 |
-
data.append(json.loads(line))
|
163 |
-
except Exception as e:
|
164 |
-
raise ValueError(
|
165 |
-
f"Error parsing JSON on line {line_number}: {e}")
|
166 |
-
|
167 |
-
data = process_json_dataset(data)
|
168 |
-
|
169 |
-
else: # Plain Text
|
170 |
-
data = parse_plain_text_input(
|
171 |
-
dataset_text,
|
172 |
-
(
|
173 |
-
dataset_plain_text_input_variables_separator or
|
174 |
-
default_dataset_plain_text_input_variables_separator
|
175 |
-
).replace("\\n", "\n"),
|
176 |
-
(
|
177 |
-
dataset_plain_text_input_and_output_separator or
|
178 |
-
default_dataset_plain_text_input_and_output_separator
|
179 |
-
).replace("\\n", "\n"),
|
180 |
-
(
|
181 |
-
dataset_plain_text_data_separator or
|
182 |
-
default_dataset_plain_text_data_separator
|
183 |
-
).replace("\\n", "\n"),
|
184 |
-
variable_names
|
185 |
-
)
|
186 |
|
187 |
-
|
188 |
-
data = get_dataset_content(dataset_from_data_dir)
|
189 |
-
data = process_json_dataset(data)
|
190 |
|
191 |
data_count = len(data)
|
192 |
-
|
|
|
193 |
preview_data = [
|
194 |
-
[item
|
195 |
-
for item in
|
196 |
]
|
197 |
|
198 |
-
if
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
208 |
|
209 |
-
|
|
|
|
|
|
|
|
|
210 |
if data_count > max_preview_count:
|
211 |
preview_info_message += f" Previewing the first {max_preview_count}."
|
212 |
|
213 |
info_message = f"{data_count} item(s)."
|
214 |
if load_dataset_from == "Data Dir":
|
215 |
-
info_message = "This dataset contains " + info_message
|
216 |
update_message = gr.Markdown.update(info_message, visible=True)
|
217 |
|
218 |
return gr.Dataframe.update(value={'data': preview_data, 'headers': headers}), gr.Markdown.update(preview_info_message), update_message, update_message
|
@@ -288,57 +266,24 @@ def do_train(
|
|
288 |
unload_models() # Need RAM for training
|
289 |
|
290 |
prompter = Prompter(template)
|
291 |
-
variable_names = prompter.get_variable_names()
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
try:
|
304 |
-
data.append(json.loads(line))
|
305 |
-
except Exception as e:
|
306 |
-
raise ValueError(
|
307 |
-
f"Error parsing JSON on line {line_number}: {e}")
|
308 |
-
|
309 |
-
data = process_json_dataset(data)
|
310 |
-
|
311 |
-
else: # Plain Text
|
312 |
-
data = parse_plain_text_input(
|
313 |
-
dataset_text,
|
314 |
-
(
|
315 |
-
dataset_plain_text_input_variables_separator or
|
316 |
-
default_dataset_plain_text_input_variables_separator
|
317 |
-
).replace("\\n", "\n"),
|
318 |
-
(
|
319 |
-
dataset_plain_text_input_and_output_separator or
|
320 |
-
default_dataset_plain_text_input_and_output_separator
|
321 |
-
).replace("\\n", "\n"),
|
322 |
-
(
|
323 |
-
dataset_plain_text_data_separator or
|
324 |
-
default_dataset_plain_text_data_separator
|
325 |
-
).replace("\\n", "\n"),
|
326 |
-
variable_names
|
327 |
-
)
|
328 |
|
329 |
-
|
330 |
-
data = get_dataset_content(dataset_from_data_dir)
|
331 |
-
data = process_json_dataset(data)
|
332 |
|
333 |
-
data_count = len(
|
334 |
evaluate_data_count = math.ceil(data_count * evaluate_data_percentage)
|
335 |
|
336 |
-
train_data = [
|
337 |
-
{
|
338 |
-
'prompt': prompter.generate_prompt(d['variables']),
|
339 |
-
'completion': d['output']}
|
340 |
-
for d in data]
|
341 |
-
|
342 |
def get_progress_text(epoch, epochs, last_loss):
|
343 |
progress_detail = f"Epoch {math.ceil(epoch)}/{epochs}"
|
344 |
if last_loss is not None:
|
@@ -449,20 +394,21 @@ Train data (first 10):
|
|
449 |
'dataset_rows': len(train_data),
|
450 |
'timestamp': time.time(),
|
451 |
|
452 |
-
|
453 |
-
'
|
|
|
454 |
|
455 |
-
'micro_batch_size': micro_batch_size,
|
456 |
-
'gradient_accumulation_steps': gradient_accumulation_steps,
|
457 |
-
'epochs': epochs,
|
458 |
-
'learning_rate': learning_rate,
|
459 |
|
460 |
-
'evaluate_data_percentage': evaluate_data_percentage,
|
461 |
|
462 |
-
'lora_r': lora_r,
|
463 |
-
'lora_alpha': lora_alpha,
|
464 |
-
'lora_dropout': lora_dropout,
|
465 |
-
'lora_target_modules': lora_target_modules,
|
466 |
}
|
467 |
json.dump(info, info_json_file, indent=2)
|
468 |
|
|
|
79 |
return gr.Code.update(value=sample_plain_text_value)
|
80 |
|
81 |
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def get_data_from_input(load_dataset_from, dataset_text, dataset_text_format,
|
86 |
+
dataset_plain_text_input_variables_separator,
|
87 |
+
dataset_plain_text_input_and_output_separator,
|
88 |
+
dataset_plain_text_data_separator,
|
89 |
+
dataset_from_data_dir, prompter):
|
90 |
+
if load_dataset_from == "Text Input":
|
91 |
+
if dataset_text_format == "JSON":
|
92 |
+
data = json.loads(dataset_text)
|
93 |
+
|
94 |
+
elif dataset_text_format == "JSON Lines":
|
95 |
+
lines = dataset_text.split('\n')
|
96 |
+
data = []
|
97 |
+
for i, line in enumerate(lines):
|
98 |
+
line_number = i + 1
|
99 |
+
try:
|
100 |
+
data.append(json.loads(line))
|
101 |
+
except Exception as e:
|
102 |
+
raise ValueError(
|
103 |
+
f"Error parsing JSON on line {line_number}: {e}")
|
104 |
+
|
105 |
+
else: # Plain Text
|
106 |
+
data = parse_plain_text_input(
|
107 |
+
dataset_text,
|
108 |
+
(
|
109 |
+
dataset_plain_text_input_variables_separator or
|
110 |
+
default_dataset_plain_text_input_variables_separator
|
111 |
+
).replace("\\n", "\n"),
|
112 |
+
(
|
113 |
+
dataset_plain_text_input_and_output_separator or
|
114 |
+
default_dataset_plain_text_input_and_output_separator
|
115 |
+
).replace("\\n", "\n"),
|
116 |
+
(
|
117 |
+
dataset_plain_text_data_separator or
|
118 |
+
default_dataset_plain_text_data_separator
|
119 |
+
).replace("\\n", "\n"),
|
120 |
+
prompter.get_variable_names()
|
121 |
+
)
|
122 |
+
|
123 |
+
else: # Load dataset from data directory
|
124 |
+
data = get_dataset_content(dataset_from_data_dir)
|
125 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
return data
|
127 |
|
128 |
|
|
|
138 |
preview_show_actual_prompt,
|
139 |
):
|
140 |
try:
|
141 |
+
max_preview_count = 30
|
142 |
prompter = Prompter(template)
|
143 |
variable_names = prompter.get_variable_names()
|
144 |
|
145 |
+
data = get_data_from_input(
|
146 |
+
load_dataset_from=load_dataset_from,
|
147 |
+
dataset_text=dataset_text,
|
148 |
+
dataset_text_format=dataset_text_format,
|
149 |
+
dataset_plain_text_input_variables_separator=dataset_plain_text_input_variables_separator,
|
150 |
+
dataset_plain_text_input_and_output_separator=dataset_plain_text_input_and_output_separator,
|
151 |
+
dataset_plain_text_data_separator=dataset_plain_text_data_separator,
|
152 |
+
dataset_from_data_dir=dataset_from_data_dir,
|
153 |
+
prompter=prompter
|
154 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
train_data = prompter.get_train_data_from_dataset(data, max_preview_count)
|
|
|
|
|
157 |
|
158 |
data_count = len(data)
|
159 |
+
|
160 |
+
headers = ['Prompt', 'Completion']
|
161 |
preview_data = [
|
162 |
+
[item.get("prompt", ""), item.get("completion", "")]
|
163 |
+
for item in train_data
|
164 |
]
|
165 |
|
166 |
+
if not prompter.template_module:
|
167 |
+
variable_names = prompter.get_variable_names()
|
168 |
+
headers += [f"Variable: {variable_name}" for variable_name in variable_names]
|
169 |
+
variables = [
|
170 |
+
[item.get(f"_var_{name}", "") for name in variable_names]
|
171 |
+
for item in train_data
|
172 |
+
]
|
173 |
+
preview_data = [d + v for d, v in zip(preview_data, variables)]
|
174 |
+
|
175 |
|
176 |
+
# if preview_show_actual_prompt:
|
177 |
+
# headers = headers + ["Prompt (actual input)"]
|
178 |
+
# rendered = [prompter.generate_prompt(
|
179 |
+
# item['variables']) for item in data[:max_preview_count]]
|
180 |
+
# preview_data = result = [d + [i]
|
181 |
+
# for d, i in zip(preview_data, rendered)]
|
182 |
|
183 |
+
# headers = headers + ["Completion (output)"]
|
184 |
+
# preview_data = result = [pd + [d['output']]
|
185 |
+
# for pd, d in zip(preview_data, data[:max_preview_count])]
|
186 |
+
|
187 |
+
preview_info_message = f"The dataset has about {data_count} item(s)."
|
188 |
if data_count > max_preview_count:
|
189 |
preview_info_message += f" Previewing the first {max_preview_count}."
|
190 |
|
191 |
info_message = f"{data_count} item(s)."
|
192 |
if load_dataset_from == "Data Dir":
|
193 |
+
info_message = "This dataset contains about " + info_message
|
194 |
update_message = gr.Markdown.update(info_message, visible=True)
|
195 |
|
196 |
return gr.Dataframe.update(value={'data': preview_data, 'headers': headers}), gr.Markdown.update(preview_info_message), update_message, update_message
|
|
|
266 |
unload_models() # Need RAM for training
|
267 |
|
268 |
prompter = Prompter(template)
|
269 |
+
# variable_names = prompter.get_variable_names()
|
270 |
+
|
271 |
+
data = get_data_from_input(
|
272 |
+
load_dataset_from=load_dataset_from,
|
273 |
+
dataset_text=dataset_text,
|
274 |
+
dataset_text_format=dataset_text_format,
|
275 |
+
dataset_plain_text_input_variables_separator=dataset_plain_text_input_variables_separator,
|
276 |
+
dataset_plain_text_input_and_output_separator=dataset_plain_text_input_and_output_separator,
|
277 |
+
dataset_plain_text_data_separator=dataset_plain_text_data_separator,
|
278 |
+
dataset_from_data_dir=dataset_from_data_dir,
|
279 |
+
prompter=prompter
|
280 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
+
train_data = prompter.get_train_data_from_dataset(data)
|
|
|
|
|
283 |
|
284 |
+
data_count = len(train_data)
|
285 |
evaluate_data_count = math.ceil(data_count * evaluate_data_percentage)
|
286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
def get_progress_text(epoch, epochs, last_loss):
|
288 |
progress_detail = f"Epoch {math.ceil(epoch)}/{epochs}"
|
289 |
if last_loss is not None:
|
|
|
394 |
'dataset_rows': len(train_data),
|
395 |
'timestamp': time.time(),
|
396 |
|
397 |
+
# These will be saved in another JSON file by the train function
|
398 |
+
# 'max_seq_length': max_seq_length,
|
399 |
+
# 'train_on_inputs': train_on_inputs,
|
400 |
|
401 |
+
# 'micro_batch_size': micro_batch_size,
|
402 |
+
# 'gradient_accumulation_steps': gradient_accumulation_steps,
|
403 |
+
# 'epochs': epochs,
|
404 |
+
# 'learning_rate': learning_rate,
|
405 |
|
406 |
+
# 'evaluate_data_percentage': evaluate_data_percentage,
|
407 |
|
408 |
+
# 'lora_r': lora_r,
|
409 |
+
# 'lora_alpha': lora_alpha,
|
410 |
+
# 'lora_dropout': lora_dropout,
|
411 |
+
# 'lora_target_modules': lora_target_modules,
|
412 |
}
|
413 |
json.dump(info, info_json_file, indent=2)
|
414 |
|
llama_lora/utils/data.py
CHANGED
@@ -30,7 +30,7 @@ def copy_sample_data_if_not_exists(source, destination):
|
|
30 |
def get_available_template_names():
|
31 |
templates_directory_path = os.path.join(Global.data_dir, "templates")
|
32 |
all_files = os.listdir(templates_directory_path)
|
33 |
-
return [
|
34 |
|
35 |
|
36 |
def get_available_dataset_names():
|
|
|
30 |
def get_available_template_names():
|
31 |
templates_directory_path = os.path.join(Global.data_dir, "templates")
|
32 |
all_files = os.listdir(templates_directory_path)
|
33 |
+
return [filename.rstrip(".json") for filename in all_files if fnmatch.fnmatch(filename, "*.json") or fnmatch.fnmatch(filename, "*.py")]
|
34 |
|
35 |
|
36 |
def get_available_dataset_names():
|
llama_lora/utils/prompter.py
CHANGED
@@ -5,13 +5,15 @@ From https://github.com/tloen/alpaca-lora/blob/main/utils/prompter.py
|
|
5 |
|
6 |
import json
|
7 |
import os.path as osp
|
|
|
|
|
8 |
from typing import Union, List
|
9 |
|
10 |
from ..globals import Global
|
11 |
|
12 |
|
13 |
class Prompter(object):
|
14 |
-
__slots__ = ("template_name", "template", "_verbose")
|
15 |
|
16 |
def __init__(self, template_name: str = "", verbose: bool = False):
|
17 |
self._verbose = verbose
|
@@ -21,12 +23,41 @@ class Prompter(object):
|
|
21 |
self.template_name = "None"
|
22 |
return
|
23 |
self.template_name = template_name
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
self.template = json.load(fp)
|
31 |
if self._verbose:
|
32 |
print(
|
@@ -47,23 +78,31 @@ class Prompter(object):
|
|
47 |
res = variables.get("prompt", "")
|
48 |
elif "variables" in self.template:
|
49 |
variable_names = self.template.get("variables")
|
50 |
-
if
|
51 |
-
variables
|
52 |
-
|
53 |
-
|
54 |
-
raise ValueError(
|
55 |
-
f"The template {self.template_name} has \"variables\" defined but does not has a default prompt defined. Please do it like: '\"default\": \"prompt_with_instruction\"' to handle cases when a matching prompt can't be found.")
|
56 |
-
default_prompt_name = self.template.get("default")
|
57 |
-
if default_prompt_name not in self.template:
|
58 |
-
raise ValueError(
|
59 |
-
f"The template {self.template_name} has \"default\" set to \"{default_prompt_name}\" but it's not defined. Please do it like: '\"{default_prompt_name}\": \"...\".")
|
60 |
-
prompt_name = get_prompt_name(variables, variable_names)
|
61 |
-
prompt_template = self.template.get(default_prompt_name)
|
62 |
-
if prompt_name in self.template:
|
63 |
-
prompt_template = self.template.get(prompt_name)
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
else:
|
69 |
if type(variables) == dict:
|
@@ -104,6 +143,30 @@ class Prompter(object):
|
|
104 |
else:
|
105 |
return ["instruction", "input"]
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def get_val(arr, index, default=None):
|
109 |
return arr[index] if -len(arr) <= index < len(arr) else default
|
@@ -117,3 +180,57 @@ def get_prompt_name(variables, variable_names):
|
|
117 |
|
118 |
def variables_to_dict(variables, variable_names):
|
119 |
return {key: (variables[i] if i < len(variables) and variables[i] is not None else '') for i, key in enumerate(variable_names)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
import json
|
7 |
import os.path as osp
|
8 |
+
import importlib
|
9 |
+
import itertools
|
10 |
from typing import Union, List
|
11 |
|
12 |
from ..globals import Global
|
13 |
|
14 |
|
15 |
class Prompter(object):
|
16 |
+
__slots__ = ("template_name", "template", "template_module", "_verbose")
|
17 |
|
18 |
def __init__(self, template_name: str = "", verbose: bool = False):
|
19 |
self._verbose = verbose
|
|
|
23 |
self.template_name = "None"
|
24 |
return
|
25 |
self.template_name = template_name
|
26 |
+
self.template_module = None
|
27 |
|
28 |
+
base_filename, ext = osp.splitext(template_name)
|
29 |
+
if ext == "":
|
30 |
+
filename = base_filename + ".json"
|
31 |
+
else:
|
32 |
+
filename = base_filename + ext
|
33 |
+
|
34 |
+
file_path = osp.join(Global.data_dir, "templates", filename)
|
35 |
+
|
36 |
+
if not osp.exists(file_path):
|
37 |
+
raise ValueError(f"Can't read {file_path}")
|
38 |
+
|
39 |
+
if ext == ".py":
|
40 |
+
template_module_spec = importlib.util.spec_from_file_location(
|
41 |
+
"template_module", file_path)
|
42 |
+
template_module = importlib.util.module_from_spec(
|
43 |
+
template_module_spec)
|
44 |
+
template_module_spec.loader.exec_module(template_module)
|
45 |
+
self.template_module = template_module
|
46 |
+
|
47 |
+
if not hasattr(template_module, "variables"):
|
48 |
+
raise ValueError(
|
49 |
+
"The template module does not have a \"variables\" attribute.")
|
50 |
+
|
51 |
+
self.template = {
|
52 |
+
'variables': template_module.variables
|
53 |
+
}
|
54 |
+
|
55 |
+
if hasattr(template_module, "response_split"):
|
56 |
+
self.template["response_split"] = template_module.response_split
|
57 |
+
|
58 |
+
return
|
59 |
+
|
60 |
+
with open(file_path) as fp:
|
61 |
self.template = json.load(fp)
|
62 |
if self._verbose:
|
63 |
print(
|
|
|
78 |
res = variables.get("prompt", "")
|
79 |
elif "variables" in self.template:
|
80 |
variable_names = self.template.get("variables")
|
81 |
+
if self.template_module:
|
82 |
+
if type(variables) == list:
|
83 |
+
variables = {k: v for k, v in zip(
|
84 |
+
variable_names, variables)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
res = self.template_module.get_prompt(variables)
|
87 |
+
else:
|
88 |
+
if type(variables) == dict:
|
89 |
+
variables = [variables.get(name, None)
|
90 |
+
for name in variable_names]
|
91 |
+
|
92 |
+
if "default" not in self.template:
|
93 |
+
raise ValueError(
|
94 |
+
f"The template {self.template_name} has \"variables\" defined but does not has a default prompt defined. Please do it like: '\"default\": \"prompt_with_instruction\"' to handle cases when a matching prompt can't be found.")
|
95 |
+
default_prompt_name = self.template.get("default")
|
96 |
+
if default_prompt_name not in self.template:
|
97 |
+
raise ValueError(
|
98 |
+
f"The template {self.template_name} has \"default\" set to \"{default_prompt_name}\" but it's not defined. Please do it like: '\"{default_prompt_name}\": \"...\".")
|
99 |
+
prompt_name = get_prompt_name(variables, variable_names)
|
100 |
+
prompt_template = self.template.get(default_prompt_name)
|
101 |
+
if prompt_name in self.template:
|
102 |
+
prompt_template = self.template.get(prompt_name)
|
103 |
+
|
104 |
+
res = prompt_template.format(
|
105 |
+
**variables_to_dict(variables, variable_names))
|
106 |
|
107 |
else:
|
108 |
if type(variables) == dict:
|
|
|
143 |
else:
|
144 |
return ["instruction", "input"]
|
145 |
|
146 |
+
def get_train_data_from_dataset(self, data, only_first_n_items=None):
|
147 |
+
if self.template_module:
|
148 |
+
if hasattr(self.template_module, "get_train_data_list_from_dataset"):
|
149 |
+
data = self.template_module.get_train_data_list_from_dataset(
|
150 |
+
data)
|
151 |
+
if only_first_n_items:
|
152 |
+
data = data[:only_first_n_items]
|
153 |
+
return list(itertools.chain(*list(map(self.template_module.get_train_data, data))))
|
154 |
+
|
155 |
+
if only_first_n_items:
|
156 |
+
data = data[:only_first_n_items]
|
157 |
+
|
158 |
+
data = process_json_dataset(data)
|
159 |
+
|
160 |
+
train_data = [
|
161 |
+
{
|
162 |
+
'prompt': self.generate_prompt(d['variables']),
|
163 |
+
'completion': d['output'],
|
164 |
+
**{"_var_" + k: v for k, v in d['variables'].items()}
|
165 |
+
}
|
166 |
+
for d in data]
|
167 |
+
|
168 |
+
return train_data
|
169 |
+
|
170 |
|
171 |
def get_val(arr, index, default=None):
|
172 |
return arr[index] if -len(arr) <= index < len(arr) else default
|
|
|
180 |
|
181 |
def variables_to_dict(variables, variable_names):
|
182 |
return {key: (variables[i] if i < len(variables) and variables[i] is not None else '') for i, key in enumerate(variable_names)}
|
183 |
+
|
184 |
+
|
185 |
+
def process_json_dataset(data):
|
186 |
+
if not isinstance(data, list):
|
187 |
+
raise ValueError("The dataset is not an array of objects.")
|
188 |
+
|
189 |
+
first_item = get_val_from_arr(data, 0, None)
|
190 |
+
|
191 |
+
if first_item is None:
|
192 |
+
raise ValueError("The dataset is empty.")
|
193 |
+
if not isinstance(first_item, dict):
|
194 |
+
raise ValueError("The dataset is not an array of objects.")
|
195 |
+
|
196 |
+
# Convert OpenAI fine-tuning dataset to LLaMA LoRA style
|
197 |
+
if "completion" in first_item and "output" not in first_item:
|
198 |
+
data = [
|
199 |
+
{"output" if k == "completion" else k: v for k, v in d.items()}
|
200 |
+
for d in data]
|
201 |
+
first_item = get_val_from_arr(data, 0, None)
|
202 |
+
|
203 |
+
# Flatten Stanford Alpaca style instances
|
204 |
+
if "instances" in first_item and isinstance(first_item["instances"], list):
|
205 |
+
data = [
|
206 |
+
{"output" if k == "completion" else k: v for k, v in d.items()}
|
207 |
+
for d in data]
|
208 |
+
flattened_data = []
|
209 |
+
for item in data:
|
210 |
+
for instance in item["instances"]:
|
211 |
+
d = {k: v for k, v in item.items() if k != "instances"}
|
212 |
+
d.update(instance)
|
213 |
+
flattened_data.append(d)
|
214 |
+
data = flattened_data
|
215 |
+
first_item = get_val_from_arr(data, 0, None)
|
216 |
+
|
217 |
+
if "output" not in first_item:
|
218 |
+
raise ValueError(
|
219 |
+
"The data does not contains an \"output\" or \"completion\".")
|
220 |
+
|
221 |
+
# Put all variables under the "variables" key if it does not exists
|
222 |
+
if "variables" not in first_item:
|
223 |
+
data = [
|
224 |
+
{
|
225 |
+
"variables":
|
226 |
+
{k: v for k, v in d.items() if k != "output"},
|
227 |
+
"output":
|
228 |
+
d["output"]
|
229 |
+
}
|
230 |
+
for d in data
|
231 |
+
]
|
232 |
+
return data
|
233 |
+
|
234 |
+
|
235 |
+
def get_val_from_arr(arr, index, default=None):
|
236 |
+
return arr[index] if -len(arr) <= index < len(arr) else default
|