Spaces:
Runtime error
Runtime error
zetavg
commited on
work on finetune ui
Browse files- llama_lora/globals.py +3 -0
- llama_lora/ui/finetune_ui.py +307 -19
- llama_lora/utils/data.py +1 -0
llama_lora/globals.py
CHANGED
@@ -14,6 +14,9 @@ class Global:
|
|
14 |
loaded_tokenizer: Any = None
|
15 |
loaded_base_model: Any = None
|
16 |
|
|
|
|
|
|
|
17 |
# UI related
|
18 |
ui_title: str = "LLaMA-LoRA"
|
19 |
ui_emoji: str = "π¦ποΈ"
|
|
|
14 |
loaded_tokenizer: Any = None
|
15 |
loaded_base_model: Any = None
|
16 |
|
17 |
+
# Functions
|
18 |
+
train_fn: Any = None
|
19 |
+
|
20 |
# UI related
|
21 |
ui_title: str = "LLaMA-LoRA"
|
22 |
ui_emoji: str = "π¦ποΈ"
|
llama_lora/ui/finetune_ui.py
CHANGED
@@ -1,8 +1,12 @@
|
|
|
|
1 |
import json
|
2 |
import time
|
|
|
3 |
import gradio as gr
|
4 |
from random_word import RandomWords
|
5 |
|
|
|
|
|
6 |
from ..utils.data import (
|
7 |
get_available_template_names,
|
8 |
get_available_dataset_names,
|
@@ -10,15 +14,20 @@ from ..utils.data import (
|
|
10 |
)
|
11 |
from ..utils.prompter import Prompter
|
12 |
|
13 |
-
r = RandomWords()
|
14 |
-
|
15 |
|
16 |
def random_hyphenated_word():
|
|
|
17 |
word1 = r.get_random_word()
|
18 |
word2 = r.get_random_word()
|
19 |
return word1 + '-' + word2
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def reload_selections(current_template, current_dataset):
|
23 |
available_template_names = get_available_template_names()
|
24 |
available_template_names_with_none = available_template_names + ["None"]
|
@@ -226,6 +235,127 @@ def parse_plain_text_input(
|
|
226 |
return result
|
227 |
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
def finetune_ui():
|
230 |
with gr.Blocks() as finetune_ui_blocks:
|
231 |
with gr.Column(elem_id="finetune_ui_content"):
|
@@ -356,75 +486,233 @@ def finetune_ui():
|
|
356 |
outputs=[template, dataset_from_data_dir],
|
357 |
)
|
358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
finetune_ui_blocks.load(_js="""
|
360 |
function finetune_ui_blocks_js() {
|
361 |
// Auto load options
|
362 |
setTimeout(function () {
|
363 |
-
document.getElementById(
|
364 |
}, 100);
|
365 |
|
366 |
-
|
367 |
// Add tooltips
|
368 |
setTimeout(function () {
|
369 |
-
tippy(
|
370 |
placement: 'bottom-end',
|
371 |
delay: [500, 0],
|
372 |
animation: 'scale-subtle',
|
373 |
content: 'Press to reload options.',
|
374 |
});
|
375 |
|
376 |
-
tippy(
|
377 |
placement: 'bottom-start',
|
378 |
delay: [500, 0],
|
379 |
animation: 'scale-subtle',
|
380 |
-
content:
|
|
|
381 |
allowHTML: true,
|
382 |
});
|
383 |
|
384 |
-
tippy(
|
385 |
placement: 'bottom-start',
|
386 |
delay: [500, 0],
|
387 |
animation: 'scale-subtle',
|
388 |
-
content:
|
|
|
389 |
allowHTML: true,
|
390 |
});
|
391 |
|
392 |
-
tippy(
|
393 |
placement: 'bottom-start',
|
394 |
delay: [500, 0],
|
395 |
animation: 'scale-subtle',
|
396 |
-
content:
|
|
|
397 |
});
|
398 |
|
399 |
-
tippy(
|
400 |
placement: 'bottom',
|
401 |
delay: [500, 0],
|
402 |
animation: 'scale-subtle',
|
403 |
-
content:
|
|
|
404 |
});
|
405 |
|
406 |
-
tippy(
|
407 |
placement: 'bottom',
|
408 |
delay: [500, 0],
|
409 |
animation: 'scale-subtle',
|
410 |
-
content:
|
|
|
411 |
});
|
412 |
|
413 |
-
tippy(
|
414 |
placement: 'bottom',
|
415 |
delay: [500, 0],
|
416 |
animation: 'scale-subtle',
|
417 |
-
content:
|
|
|
418 |
});
|
419 |
|
420 |
-
tippy(
|
421 |
placement: 'bottom-start',
|
422 |
delay: [500, 0],
|
423 |
animation: 'scale-subtle',
|
424 |
-
content:
|
|
|
425 |
});
|
426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
}, 100);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
}
|
429 |
""")
|
430 |
|
|
|
1 |
+
import os
|
2 |
import json
|
3 |
import time
|
4 |
+
from datetime import datetime
|
5 |
import gradio as gr
|
6 |
from random_word import RandomWords
|
7 |
|
8 |
+
from ..globals import Global
|
9 |
+
from ..models import get_base_model, get_tokenizer
|
10 |
from ..utils.data import (
|
11 |
get_available_template_names,
|
12 |
get_available_dataset_names,
|
|
|
14 |
)
|
15 |
from ..utils.prompter import Prompter
|
16 |
|
|
|
|
|
17 |
|
18 |
def random_hyphenated_word():
|
19 |
+
r = RandomWords()
|
20 |
word1 = r.get_random_word()
|
21 |
word2 = r.get_random_word()
|
22 |
return word1 + '-' + word2
|
23 |
|
24 |
|
25 |
+
def random_name():
|
26 |
+
current_datetime = datetime.now()
|
27 |
+
formatted_datetime = current_datetime.strftime("%Y-%m-%d-%H-%M-%S")
|
28 |
+
return f"{random_hyphenated_word()}-{formatted_datetime}"
|
29 |
+
|
30 |
+
|
31 |
def reload_selections(current_template, current_dataset):
|
32 |
available_template_names = get_available_template_names()
|
33 |
available_template_names_with_none = available_template_names + ["None"]
|
|
|
235 |
return result
|
236 |
|
237 |
|
238 |
+
def do_train(
|
239 |
+
# Dataset
|
240 |
+
template,
|
241 |
+
load_dataset_from,
|
242 |
+
dataset_from_data_dir,
|
243 |
+
dataset_text,
|
244 |
+
dataset_text_format,
|
245 |
+
dataset_plain_text_input_variables_separator,
|
246 |
+
dataset_plain_text_input_and_output_separator,
|
247 |
+
dataset_plain_text_data_separator,
|
248 |
+
# Training Options
|
249 |
+
max_seq_length,
|
250 |
+
micro_batch_size,
|
251 |
+
gradient_accumulation_steps,
|
252 |
+
epochs,
|
253 |
+
learning_rate,
|
254 |
+
lora_r,
|
255 |
+
lora_alpha,
|
256 |
+
lora_dropout,
|
257 |
+
model_name,
|
258 |
+
progress=gr.Progress(track_tqdm=True),
|
259 |
+
):
|
260 |
+
try:
|
261 |
+
prompter = Prompter(template)
|
262 |
+
variable_names = prompter.get_variable_names()
|
263 |
+
|
264 |
+
if load_dataset_from == "Text Input":
|
265 |
+
if dataset_text_format == "JSON":
|
266 |
+
data = json.loads(dataset_text)
|
267 |
+
data = process_json_dataset(data)
|
268 |
+
|
269 |
+
elif dataset_text_format == "JSON Lines":
|
270 |
+
lines = dataset_text.split('\n')
|
271 |
+
data = []
|
272 |
+
for i, line in enumerate(lines):
|
273 |
+
line_number = i + 1
|
274 |
+
try:
|
275 |
+
data.append(json.loads(line))
|
276 |
+
except Exception as e:
|
277 |
+
raise ValueError(
|
278 |
+
f"Error parsing JSON on line {line_number}: {e}")
|
279 |
+
|
280 |
+
data = process_json_dataset(data)
|
281 |
+
|
282 |
+
else: # Plain Text
|
283 |
+
data = parse_plain_text_input(
|
284 |
+
dataset_text,
|
285 |
+
(
|
286 |
+
dataset_plain_text_input_variables_separator or
|
287 |
+
default_dataset_plain_text_input_variables_separator
|
288 |
+
).replace("\\n", "\n"),
|
289 |
+
(
|
290 |
+
dataset_plain_text_input_and_output_separator or
|
291 |
+
default_dataset_plain_text_input_and_output_separator
|
292 |
+
).replace("\\n", "\n"),
|
293 |
+
(
|
294 |
+
dataset_plain_text_data_separator or
|
295 |
+
default_dataset_plain_text_data_separator
|
296 |
+
).replace("\\n", "\n"),
|
297 |
+
variable_names
|
298 |
+
)
|
299 |
+
|
300 |
+
else: # Load dataset from data directory
|
301 |
+
data = get_dataset_content(dataset_from_data_dir)
|
302 |
+
data = process_json_dataset(data)
|
303 |
+
|
304 |
+
data_count = len(data)
|
305 |
+
|
306 |
+
train_data = [
|
307 |
+
{
|
308 |
+
'prompt': prompter.generate_prompt(d['variables']),
|
309 |
+
'completion': d['output']}
|
310 |
+
for d in data]
|
311 |
+
|
312 |
+
if Global.ui_dev_mode:
|
313 |
+
message = f"""Currently in UI dev mode, not doing the actual training.
|
314 |
+
|
315 |
+
Train options: {json.dumps({
|
316 |
+
'max_seq_length': max_seq_length,
|
317 |
+
'micro_batch_size': micro_batch_size,
|
318 |
+
'gradient_accumulation_steps': gradient_accumulation_steps,
|
319 |
+
'epochs': epochs,
|
320 |
+
'learning_rate': learning_rate,
|
321 |
+
'lora_r': lora_r,
|
322 |
+
'lora_alpha': lora_alpha,
|
323 |
+
'lora_dropout': lora_dropout,
|
324 |
+
'model_name': model_name,
|
325 |
+
}, indent=2)}
|
326 |
+
|
327 |
+
Train data (first 10):
|
328 |
+
{json.dumps(train_data[:10], indent=2)}
|
329 |
+
"""
|
330 |
+
print(message)
|
331 |
+
time.sleep(2)
|
332 |
+
return message
|
333 |
+
|
334 |
+
return Global.train_fn(
|
335 |
+
get_base_model(), # base_model
|
336 |
+
get_tokenizer(), # tokenizer
|
337 |
+
os.path.join(Global.data_dir, "lora_models",
|
338 |
+
model_name), # output_dir
|
339 |
+
train_data,
|
340 |
+
# 128, # batch_size (is not used, use gradient_accumulation_steps instead)
|
341 |
+
micro_batch_size, # micro_batch_size
|
342 |
+
gradient_accumulation_steps,
|
343 |
+
epochs, # num_epochs
|
344 |
+
learning_rate, # learning_rate
|
345 |
+
max_seq_length, # cutoff_len
|
346 |
+
0, # val_set_size
|
347 |
+
lora_r, # lora_r
|
348 |
+
lora_alpha, # lora_alpha
|
349 |
+
lora_dropout, # lora_dropout
|
350 |
+
["q_proj", "v_proj"], # lora_target_modules
|
351 |
+
True, # train_on_inputs
|
352 |
+
False, # group_by_length
|
353 |
+
None, # resume_from_checkpoint
|
354 |
+
)
|
355 |
+
except Exception as e:
|
356 |
+
raise gr.Error(e)
|
357 |
+
|
358 |
+
|
359 |
def finetune_ui():
|
360 |
with gr.Blocks() as finetune_ui_blocks:
|
361 |
with gr.Column(elem_id="finetune_ui_content"):
|
|
|
486 |
outputs=[template, dataset_from_data_dir],
|
487 |
)
|
488 |
|
489 |
+
max_seq_length = gr.Slider(
|
490 |
+
minimum=1, maximum=4096, value=512,
|
491 |
+
label="Max Sequence Length",
|
492 |
+
info="The maximum length of each sample text sequence. Sequences longer than this will be truncated."
|
493 |
+
)
|
494 |
+
|
495 |
+
with gr.Row():
|
496 |
+
with gr.Column():
|
497 |
+
micro_batch_size = gr.Slider(
|
498 |
+
minimum=1, maximum=100, value=1,
|
499 |
+
label="Micro Batch Size",
|
500 |
+
info="The number of examples in each mini-batch for gradient computation. A smaller micro_batch_size reduces memory usage but may increase training time."
|
501 |
+
)
|
502 |
+
|
503 |
+
gradient_accumulation_steps = gr.Slider(
|
504 |
+
minimum=1, maximum=10, value=1,
|
505 |
+
label="Gradient Accumulation Steps",
|
506 |
+
info="The number of steps to accumulate gradients before updating model parameters. This can be used to simulate a larger effective batch size without increasing memory usage."
|
507 |
+
)
|
508 |
+
|
509 |
+
epochs = gr.Slider(
|
510 |
+
minimum=1, maximum=100, value=1,
|
511 |
+
label="Epochs",
|
512 |
+
info="The number of times to iterate over the entire training dataset. A larger number of epochs may improve model performance but also increase the risk of overfitting.")
|
513 |
+
|
514 |
+
learning_rate = gr.Slider(
|
515 |
+
minimum=0.00001, maximum=0.01, value=3e-4,
|
516 |
+
label="Learning Rate",
|
517 |
+
info="The initial learning rate for the optimizer. A higher learning rate may speed up convergence but also cause instability or divergence. A lower learning rate may require more steps to reach optimal performance but also avoid overshooting or oscillating around local minima."
|
518 |
+
)
|
519 |
+
|
520 |
+
with gr.Column():
|
521 |
+
lora_r = gr.Slider(
|
522 |
+
minimum=1, maximum=16, value=8,
|
523 |
+
label="LoRA R",
|
524 |
+
info="The rank parameter for LoRA, which controls the dimensionality of the rank decomposition matrices. A larger lora_r increases the expressiveness and flexibility of LoRA but also increases the number of trainable parameters and memory usage."
|
525 |
+
)
|
526 |
+
|
527 |
+
lora_alpha = gr.Slider(
|
528 |
+
minimum=1, maximum=128, value=16,
|
529 |
+
label="LoRA Alpha",
|
530 |
+
info="The scaling parameter for LoRA, which controls how much LoRA affects the original pre-trained model weights. A larger lora_alpha amplifies the impact of LoRA but may also distort or override the pre-trained knowledge."
|
531 |
+
)
|
532 |
+
|
533 |
+
lora_dropout = gr.Slider(
|
534 |
+
minimum=0, maximum=1, value=0.01,
|
535 |
+
label="LoRA Dropout",
|
536 |
+
info="The dropout probability for LoRA, which controls the fraction of LoRA parameters that are set to zero during training. A larger lora_dropout increases the regularization effect of LoRA but also increases the risk of underfitting."
|
537 |
+
)
|
538 |
+
|
539 |
+
with gr.Column():
|
540 |
+
model_name = gr.Textbox(
|
541 |
+
lines=1, label="LoRA Model Name", value=random_name(),
|
542 |
+
elem_id="finetune_model_name",
|
543 |
+
)
|
544 |
+
|
545 |
+
with gr.Row():
|
546 |
+
train_btn = gr.Button(
|
547 |
+
"Train", variant="primary", label="Train",
|
548 |
+
elem_id="finetune_start_btn"
|
549 |
+
)
|
550 |
+
|
551 |
+
abort_button = gr.Button(
|
552 |
+
"Abort", label="Abort",
|
553 |
+
elem_id="finetune_stop_btn"
|
554 |
+
)
|
555 |
+
confirm_abort_button = gr.Button(
|
556 |
+
"Confirm Abort", label="Confirm Abort", variant="stop",
|
557 |
+
elem_id="finetune_confirm_stop_btn"
|
558 |
+
)
|
559 |
+
|
560 |
+
training_status = gr.Text(
|
561 |
+
"Training status will be shown here.",
|
562 |
+
label="Training Status/Results",
|
563 |
+
elem_id="finetune_training_status")
|
564 |
+
|
565 |
+
train_progress = train_btn.click(
|
566 |
+
fn=do_train,
|
567 |
+
inputs=(dataset_inputs + [
|
568 |
+
max_seq_length,
|
569 |
+
micro_batch_size,
|
570 |
+
gradient_accumulation_steps,
|
571 |
+
epochs,
|
572 |
+
learning_rate,
|
573 |
+
lora_r,
|
574 |
+
lora_alpha,
|
575 |
+
lora_dropout,
|
576 |
+
model_name
|
577 |
+
]),
|
578 |
+
outputs=training_status
|
579 |
+
)
|
580 |
+
|
581 |
+
# controlled by JS, shows the confirm_abort_button
|
582 |
+
abort_button.click(None, None, None, None)
|
583 |
+
confirm_abort_button.click(None, None, None, cancels=[train_progress])
|
584 |
+
|
585 |
finetune_ui_blocks.load(_js="""
|
586 |
function finetune_ui_blocks_js() {
|
587 |
// Auto load options
|
588 |
setTimeout(function () {
|
589 |
+
document.getElementById('finetune_reload_selections_button').click();
|
590 |
}, 100);
|
591 |
|
|
|
592 |
// Add tooltips
|
593 |
setTimeout(function () {
|
594 |
+
tippy('#finetune_reload_selections_button', {
|
595 |
placement: 'bottom-end',
|
596 |
delay: [500, 0],
|
597 |
animation: 'scale-subtle',
|
598 |
content: 'Press to reload options.',
|
599 |
});
|
600 |
|
601 |
+
tippy('#finetune_template', {
|
602 |
placement: 'bottom-start',
|
603 |
delay: [500, 0],
|
604 |
animation: 'scale-subtle',
|
605 |
+
content:
|
606 |
+
'Select a template for your prompt. <br />To see how the selected template work, select the "Preview" tab and then check "Show actual prompt". <br />Templates are loaded from the "templates" folder of your data directory.',
|
607 |
allowHTML: true,
|
608 |
});
|
609 |
|
610 |
+
tippy('#finetune_load_dataset_from', {
|
611 |
placement: 'bottom-start',
|
612 |
delay: [500, 0],
|
613 |
animation: 'scale-subtle',
|
614 |
+
content:
|
615 |
+
'<strong>Text Input</strong>: Paste the dataset directly in the UI.<br/><strong>Data Dir</strong>: Select a dataset in the data directory.',
|
616 |
allowHTML: true,
|
617 |
});
|
618 |
|
619 |
+
tippy('#finetune_dataset_preview_show_actual_prompt', {
|
620 |
placement: 'bottom-start',
|
621 |
delay: [500, 0],
|
622 |
animation: 'scale-subtle',
|
623 |
+
content:
|
624 |
+
'Check to show the prompt that will be feed to the language model.',
|
625 |
});
|
626 |
|
627 |
+
tippy('#dataset_plain_text_input_variables_separator', {
|
628 |
placement: 'bottom',
|
629 |
delay: [500, 0],
|
630 |
animation: 'scale-subtle',
|
631 |
+
content:
|
632 |
+
'Define a separator to separate input variables. Use "\\\\n" for new lines.',
|
633 |
});
|
634 |
|
635 |
+
tippy('#dataset_plain_text_input_and_output_separator', {
|
636 |
placement: 'bottom',
|
637 |
delay: [500, 0],
|
638 |
animation: 'scale-subtle',
|
639 |
+
content:
|
640 |
+
'Define a separator to separate the input (prompt) and the output (completion). Use "\\\\n" for new lines.',
|
641 |
});
|
642 |
|
643 |
+
tippy('#dataset_plain_text_data_separator', {
|
644 |
placement: 'bottom',
|
645 |
delay: [500, 0],
|
646 |
animation: 'scale-subtle',
|
647 |
+
content:
|
648 |
+
'Define a separator to separate different rows of the train data. Use "\\\\n" for new lines.',
|
649 |
});
|
650 |
|
651 |
+
tippy('#finetune_dataset_text_load_sample_button', {
|
652 |
placement: 'bottom-start',
|
653 |
delay: [500, 0],
|
654 |
animation: 'scale-subtle',
|
655 |
+
content:
|
656 |
+
'Press to load a sample dataset of the current selected format into the textbox.',
|
657 |
});
|
658 |
|
659 |
+
tippy('#finetune_model_name', {
|
660 |
+
placement: 'bottom',
|
661 |
+
delay: [500, 0],
|
662 |
+
animation: 'scale-subtle',
|
663 |
+
content:
|
664 |
+
'The name of the new LoRA model. Must be unique.',
|
665 |
+
});
|
666 |
}, 100);
|
667 |
+
|
668 |
+
// Show/hide start and stop button base on the state.
|
669 |
+
setTimeout(function () {
|
670 |
+
// Make the '#finetune_training_status > .wrap' element appear
|
671 |
+
if (!document.querySelector('#finetune_training_status > .wrap')) {
|
672 |
+
document.getElementById('finetune_confirm_stop_btn').click();
|
673 |
+
}
|
674 |
+
|
675 |
+
setTimeout(function () {
|
676 |
+
let resetStopButtonTimer;
|
677 |
+
document
|
678 |
+
.getElementById('finetune_stop_btn')
|
679 |
+
.addEventListener('click', function () {
|
680 |
+
if (resetStopButtonTimer) clearTimeout(resetStopButtonTimer);
|
681 |
+
resetStopButtonTimer = setTimeout(function () {
|
682 |
+
document.getElementById('finetune_stop_btn').style.display = 'block';
|
683 |
+
document.getElementById('finetune_confirm_stop_btn').style.display =
|
684 |
+
'none';
|
685 |
+
}, 5000);
|
686 |
+
document.getElementById('finetune_stop_btn').style.display = 'none';
|
687 |
+
document.getElementById('finetune_confirm_stop_btn').style.display =
|
688 |
+
'block';
|
689 |
+
});
|
690 |
+
const output_wrap_element = document.querySelector(
|
691 |
+
'#finetune_training_status > .wrap'
|
692 |
+
);
|
693 |
+
function handle_output_wrap_element_class_change() {
|
694 |
+
if (Array.from(output_wrap_element.classList).includes('hide')) {
|
695 |
+
if (resetStopButtonTimer) clearTimeout(resetStopButtonTimer);
|
696 |
+
document.getElementById('finetune_start_btn').style.display = 'block';
|
697 |
+
document.getElementById('finetune_stop_btn').style.display = 'none';
|
698 |
+
document.getElementById('finetune_confirm_stop_btn').style.display =
|
699 |
+
'none';
|
700 |
+
} else {
|
701 |
+
document.getElementById('finetune_start_btn').style.display = 'none';
|
702 |
+
document.getElementById('finetune_stop_btn').style.display = 'block';
|
703 |
+
document.getElementById('finetune_confirm_stop_btn').style.display =
|
704 |
+
'none';
|
705 |
+
}
|
706 |
+
}
|
707 |
+
new MutationObserver(function (mutationsList, observer) {
|
708 |
+
handle_output_wrap_element_class_change();
|
709 |
+
}).observe(output_wrap_element, {
|
710 |
+
attributes: true,
|
711 |
+
attributeFilter: ['class'],
|
712 |
+
});
|
713 |
+
handle_output_wrap_element_class_change();
|
714 |
+
}, 500);
|
715 |
+
}, 0);
|
716 |
}
|
717 |
""")
|
718 |
|
llama_lora/utils/data.py
CHANGED
@@ -11,6 +11,7 @@ def init_data_dir():
|
|
11 |
parent_directory_path = os.path.dirname(current_file_path)
|
12 |
project_dir_path = os.path.abspath(
|
13 |
os.path.join(parent_directory_path, "..", ".."))
|
|
|
14 |
copy_sample_data_if_not_exists(os.path.join(project_dir_path, "templates"),
|
15 |
os.path.join(Global.data_dir, "templates"))
|
16 |
copy_sample_data_if_not_exists(os.path.join(project_dir_path, "datasets"),
|
|
|
11 |
parent_directory_path = os.path.dirname(current_file_path)
|
12 |
project_dir_path = os.path.abspath(
|
13 |
os.path.join(parent_directory_path, "..", ".."))
|
14 |
+
os.makedirs(os.path.join(Global.data_dir, "lora_models"), exist_ok=True)
|
15 |
copy_sample_data_if_not_exists(os.path.join(project_dir_path, "templates"),
|
16 |
os.path.join(Global.data_dir, "templates"))
|
17 |
copy_sample_data_if_not_exists(os.path.join(project_dir_path, "datasets"),
|