import importlib import os import sys import gc import json import re from transformers import ( AutoModelForCausalLM, AutoModel, AutoTokenizer, LlamaTokenizer ) from .config import Config from .globals import Global from .lib.get_device import get_device def get_torch(): return importlib.import_module('torch') def get_peft_model_class(): return importlib.import_module('peft').PeftModel def get_new_base_model(base_model_name): if Config.ui_dev_mode: return if Global.is_train_starting or Global.is_training: raise Exception("Cannot load new base model while training.") if Global.new_base_model_that_is_ready_to_be_used: if Global.name_of_new_base_model_that_is_ready_to_be_used == base_model_name: model = Global.new_base_model_that_is_ready_to_be_used Global.new_base_model_that_is_ready_to_be_used = None Global.name_of_new_base_model_that_is_ready_to_be_used = None return model else: Global.new_base_model_that_is_ready_to_be_used = None Global.name_of_new_base_model_that_is_ready_to_be_used = None clear_cache() model_class = AutoModelForCausalLM from_tf = False force_download = False has_tried_force_download = False while True: try: model = _get_model_from_pretrained( model_class, base_model_name, from_tf=from_tf, force_download=force_download) break except Exception as e: if 'from_tf' in str(e): print( f"Got error while loading model {base_model_name} with AutoModelForCausalLM: {e}.") print("Retrying with from_tf=True...") from_tf = True force_download = False elif model_class == AutoModelForCausalLM: print( f"Got error while loading model {base_model_name} with AutoModelForCausalLM: {e}.") print("Retrying with AutoModel...") model_class = AutoModel force_download = False else: if has_tried_force_download: raise e print( f"Got error while loading model {base_model_name}: {e}.") print("Retrying with force_download=True...") model_class = AutoModelForCausalLM from_tf = False force_download = True has_tried_force_download = True tokenizer = get_tokenizer(base_model_name) if re.match("[^/]+/llama", base_model_name): model.config.pad_token_id = tokenizer.pad_token_id = 0 model.config.bos_token_id = tokenizer.bos_token_id = 1 model.config.eos_token_id = tokenizer.eos_token_id = 2 return model def _get_model_from_pretrained(model_class, model_name, from_tf=False, force_download=False): torch = get_torch() device = get_device() if device == "cuda": return model_class.from_pretrained( model_name, load_in_8bit=Config.load_8bit, torch_dtype=torch.float16, # device_map="auto", # ? https://github.com/tloen/alpaca-lora/issues/21 device_map={'': 0}, from_tf=from_tf, force_download=force_download, trust_remote_code=Config.trust_remote_code ) elif device == "mps": return model_class.from_pretrained( model_name, device_map={"": device}, torch_dtype=torch.float16, from_tf=from_tf, force_download=force_download, trust_remote_code=Config.trust_remote_code ) else: return model_class.from_pretrained( model_name, device_map={"": device}, low_cpu_mem_usage=True, from_tf=from_tf, force_download=force_download, trust_remote_code=Config.trust_remote_code ) def get_tokenizer(base_model_name): if Config.ui_dev_mode: return if Global.is_train_starting or Global.is_training: raise Exception("Cannot load new base model while training.") loaded_tokenizer = Global.loaded_tokenizers.get(base_model_name) if loaded_tokenizer: return loaded_tokenizer try: tokenizer = AutoTokenizer.from_pretrained( base_model_name, trust_remote_code=Config.trust_remote_code ) except Exception as e: if 'LLaMATokenizer' in str(e): tokenizer = LlamaTokenizer.from_pretrained( base_model_name, trust_remote_code=Config.trust_remote_code ) else: raise e Global.loaded_tokenizers.set(base_model_name, tokenizer) return tokenizer def get_model( base_model_name, peft_model_name=None): if Config.ui_dev_mode: return if Global.is_train_starting or Global.is_training: raise Exception("Cannot load new base model while training.") torch = get_torch() if peft_model_name == "None": peft_model_name = None model_key = base_model_name if peft_model_name: model_key = f"{base_model_name}//{peft_model_name}" loaded_model = Global.loaded_models.get(model_key) if loaded_model: return loaded_model peft_model_name_or_path = peft_model_name if peft_model_name: lora_models_directory_path = os.path.join( Config.data_dir, "lora_models") possible_lora_model_path = os.path.join( lora_models_directory_path, peft_model_name) if os.path.isdir(possible_lora_model_path): peft_model_name_or_path = possible_lora_model_path possible_model_info_json_path = os.path.join( possible_lora_model_path, "info.json") if os.path.isfile(possible_model_info_json_path): try: with open(possible_model_info_json_path, "r") as file: json_data = json.load(file) possible_hf_model_name = json_data.get("hf_model_name") if possible_hf_model_name and json_data.get("load_from_hf"): peft_model_name_or_path = possible_hf_model_name except Exception as e: raise ValueError( "Error reading model info from {possible_model_info_json_path}: {e}") Global.loaded_models.prepare_to_set() clear_cache() model = get_new_base_model(base_model_name) if peft_model_name: device = get_device() PeftModel = get_peft_model_class() if device == "cuda": model = PeftModel.from_pretrained( model, peft_model_name_or_path, torch_dtype=torch.float16, # ? https://github.com/tloen/alpaca-lora/issues/21 device_map={'': 0}, ) elif device == "mps": model = PeftModel.from_pretrained( model, peft_model_name_or_path, device_map={"": device}, torch_dtype=torch.float16, ) else: model = PeftModel.from_pretrained( model, peft_model_name_or_path, device_map={"": device}, ) if re.match("[^/]+/llama", base_model_name): model.config.pad_token_id = get_tokenizer( base_model_name).pad_token_id = 0 model.config.bos_token_id = 1 model.config.eos_token_id = 2 if not Config.load_8bit: model.half() # seems to fix bugs for some users. model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) Global.loaded_models.set(model_key, model) clear_cache() return model def prepare_base_model(base_model_name=Config.default_base_model_name): Global.new_base_model_that_is_ready_to_be_used = get_new_base_model( base_model_name) Global.name_of_new_base_model_that_is_ready_to_be_used = base_model_name def clear_cache(): gc.collect() torch = get_torch() # if not shared.args.cpu: # will not be running on CPUs anyway with torch.no_grad(): torch.cuda.empty_cache() def unload_models(): Global.loaded_models.clear() Global.loaded_tokenizers.clear() clear_cache()