import os import subprocess from typing import Any, Dict, List, Optional, Tuple, Union from numba import cuda import nvidia_smi from .utils.lru_cache import LRUCache from .lib.finetune import train class Global: version = None data_dir: str = "" load_8bit: bool = False default_base_model_name: str = "" base_model_name: str = "" base_model_choices: List[str] = [] # Functions train_fn: Any = train # Training Control should_stop_training = False # Generation Control should_stop_generating = False generation_force_stopped_at = None # Model related loaded_models = LRUCache(1) loaded_tokenizers = LRUCache(1) new_base_model_that_is_ready_to_be_used = None name_of_new_base_model_that_is_ready_to_be_used = None # GPU Info gpu_cc = None # GPU compute capability gpu_sms = None # GPU total number of SMs gpu_total_cores = None # GPU total cores gpu_total_memory = None # WandB enable_wandb = False wandb_api_key = None default_wandb_project = "llama-lora-tuner" # UI related ui_title: str = "LLaMA-LoRA Tuner" ui_emoji: str = "🦙🎛️" ui_subtitle: str = "Toolkit for evaluating and fine-tuning LLaMA models with low-rank adaptation (LoRA)." ui_show_sys_info: bool = True ui_dev_mode: bool = False ui_dev_mode_title_prefix: str = "[UI DEV MODE] " def get_package_dir(): current_file_path = os.path.abspath(__file__) parent_directory_path = os.path.dirname(current_file_path) return os.path.abspath(parent_directory_path) def get_git_commit_hash(): try: original_cwd = os.getcwd() project_dir = get_package_dir() try: os.chdir(project_dir) commit_hash = subprocess.check_output( ['git', 'rev-parse', 'HEAD']).strip().decode('utf-8') return commit_hash except Exception as e: print(f"Cannot get git commit hash: {e}") finally: os.chdir(original_cwd) except Exception as e: print(f"Cannot get git commit hash: {e}") commit_hash = get_git_commit_hash() if commit_hash: Global.version = commit_hash[:8] def load_gpu_info(): try: cc_cores_per_SM_dict = { (2, 0): 32, (2, 1): 48, (3, 0): 192, (3, 5): 192, (3, 7): 192, (5, 0): 128, (5, 2): 128, (6, 0): 64, (6, 1): 128, (7, 0): 64, (7, 5): 64, (8, 0): 64, (8, 6): 128, (8, 9): 128, (9, 0): 128 } # the above dictionary should result in a value of "None" if a cc match # is not found. The dictionary needs to be extended as new devices become # available, and currently does not account for all Jetson devices device = cuda.get_current_device() device_sms = getattr(device, 'MULTIPROCESSOR_COUNT') device_cc = device.compute_capability cores_per_sm = cc_cores_per_SM_dict.get(device_cc) total_cores = cores_per_sm*device_sms print("GPU compute capability: ", device_cc) print("GPU total number of SMs: ", device_sms) print("GPU total cores: ", total_cores) Global.gpu_cc = device_cc Global.gpu_sms = device_sms Global.gpu_total_cores = total_cores nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle) total_memory = info.total total_memory_mb = total_memory / (1024 ** 2) total_memory_gb = total_memory / (1024 ** 3) # Print the memory size print( f"GPU total memory: {total_memory} bytes ({total_memory_mb:.2f} MB) ({total_memory_gb:.2f} GB)") Global.gpu_total_memory = total_memory except Exception as e: print(f"Notice: cannot get GPU info: {e}") load_gpu_info()