Spaces:
Sleeping
Sleeping
update 7
Browse files
app.py
CHANGED
@@ -2,747 +2,259 @@ import streamlit as st
|
|
2 |
import cv2
|
3 |
import mediapipe as mp
|
4 |
import numpy as np
|
5 |
-
import
|
6 |
-
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Real-time feedback for single rep
|
48 |
-
def analyze_single_rep(rep, rep_data):
|
49 |
-
"""Provide actionable feedback for a single rep."""
|
50 |
-
feedback = []
|
51 |
-
avg_rom = np.mean([r["ROM"] for r in rep_data])
|
52 |
-
avg_tempo = np.mean([r["Tempo"] for r in rep_data])
|
53 |
-
avg_smoothness = np.mean([r["Smoothness"] for r in rep_data])
|
54 |
-
|
55 |
-
if rep["ROM"] < avg_rom * 0.8:
|
56 |
-
feedback.append("Extend arm more")
|
57 |
-
if rep["Tempo"] < avg_tempo * 0.8:
|
58 |
-
feedback.append("Slow down")
|
59 |
-
if rep["Smoothness"] > avg_smoothness * 1.2:
|
60 |
-
feedback.append("Move smoothly")
|
61 |
-
|
62 |
-
return " | ".join(feedback) if feedback else "Good rep!"
|
63 |
-
|
64 |
-
|
65 |
-
# Post-workout feedback function with Isolation Forest
|
66 |
-
def analyze_workout_with_isolation_forest(rep_data):
|
67 |
-
if not rep_data:
|
68 |
-
print("No reps completed.")
|
69 |
-
return
|
70 |
-
|
71 |
-
print("\n--- Post-Workout Summary ---")
|
72 |
-
|
73 |
-
# Convert rep_data to a feature matrix
|
74 |
-
features = np.array([[rep["ROM"], rep["Tempo"], rep["Smoothness"]] for rep in rep_data])
|
75 |
-
|
76 |
-
# Train Isolation Forest
|
77 |
-
model = IsolationForest(contamination=0.2, random_state=42)
|
78 |
-
predictions = model.fit_predict(features)
|
79 |
-
|
80 |
-
# Analyze reps
|
81 |
-
for i, (rep, prediction) in enumerate(zip(rep_data, predictions), 1):
|
82 |
-
status = "Good" if prediction == 1 else "Anomalous"
|
83 |
-
reason = []
|
84 |
-
if prediction == -1: # If anomalous
|
85 |
-
if rep["ROM"] < np.mean(features[:, 0]) - np.std(features[:, 0]):
|
86 |
-
reason.append("Low ROM")
|
87 |
-
if rep["Tempo"] < np.mean(features[:, 1]) - np.std(features[:, 1]):
|
88 |
-
reason.append("Too Fast")
|
89 |
-
if rep["Smoothness"] > np.mean(features[:, 2]) + np.std(features[:, 2]):
|
90 |
-
reason.append("Jerky Movement")
|
91 |
-
reason_str = ", ".join(reason) if reason else "None"
|
92 |
-
print(f"Rep {i}: {status} | ROM: {rep['ROM']:.2f}, Tempo: {rep['Tempo']:.2f}s, Smoothness: {rep['Smoothness']:.2f} | Reason: {reason_str}")
|
93 |
-
|
94 |
-
|
95 |
-
# Main workout tracking function
|
96 |
-
def main():
|
97 |
-
cap = cv2.VideoCapture(0)
|
98 |
-
counter = 0 # Rep counter
|
99 |
-
stage = None # Movement stage
|
100 |
-
max_reps = 10
|
101 |
-
rep_data = [] # Store metrics for each rep
|
102 |
-
feedback = "" # Real-time feedback for the video feed
|
103 |
-
workout_start_time = None # Timer start
|
104 |
-
|
105 |
-
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
|
106 |
-
while cap.isOpened():
|
107 |
-
ret, frame = cap.read()
|
108 |
-
if not ret:
|
109 |
-
print("Failed to grab frame.")
|
110 |
-
break
|
111 |
-
|
112 |
-
# Initialize workout start time
|
113 |
-
if workout_start_time is None:
|
114 |
-
workout_start_time = time.time()
|
115 |
-
|
116 |
-
# Timer
|
117 |
-
elapsed_time = time.time() - workout_start_time
|
118 |
-
timer_text = f"Timer: {int(elapsed_time)}s"
|
119 |
-
|
120 |
-
# Convert frame to RGB
|
121 |
-
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
122 |
-
image.flags.writeable = False
|
123 |
-
results = pose.process(image)
|
124 |
-
|
125 |
-
# Convert back to BGR
|
126 |
-
image.flags.writeable = True
|
127 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
128 |
-
|
129 |
-
# Check if pose landmarks are detected
|
130 |
-
if results.pose_landmarks:
|
131 |
-
landmarks = results.pose_landmarks.landmark
|
132 |
-
|
133 |
-
# Extract key joints
|
134 |
-
shoulder = [
|
135 |
-
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
136 |
-
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y
|
137 |
-
]
|
138 |
-
elbow = [
|
139 |
-
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
|
140 |
-
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y
|
141 |
-
]
|
142 |
-
wrist = [
|
143 |
-
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
144 |
-
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y
|
145 |
-
]
|
146 |
-
|
147 |
-
# Check visibility of key joints
|
148 |
-
visibility_threshold = 0.5
|
149 |
-
if (landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].visibility < visibility_threshold or
|
150 |
-
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].visibility < visibility_threshold or
|
151 |
-
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].visibility < visibility_threshold):
|
152 |
-
draw_text_with_background(image, "Ensure all key joints are visible!", (50, 150),
|
153 |
-
cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 5, (0, 0, 255))
|
154 |
-
cv2.imshow('Workout Feedback', image)
|
155 |
-
continue # Skip processing if joints are not visible
|
156 |
-
|
157 |
-
# Calculate the angle
|
158 |
-
angle = calculate_angle(shoulder, elbow, wrist)
|
159 |
-
|
160 |
-
# Stage logic for counting reps
|
161 |
-
if angle > 160 and stage != "down":
|
162 |
-
stage = "down"
|
163 |
-
start_time = time.time() # Start timing for the rep
|
164 |
-
start_angle = angle # Record the starting angle
|
165 |
-
|
166 |
-
# Stop the program if it's the 10th rep down stage
|
167 |
-
if counter == max_reps:
|
168 |
-
print("Workout complete at rep 10 (down stage)!")
|
169 |
-
break
|
170 |
-
elif angle < 40 and stage == "down":
|
171 |
-
stage = "up"
|
172 |
-
counter += 1
|
173 |
-
end_time = time.time() # End timing for the rep
|
174 |
-
end_angle = angle # Record the ending angle
|
175 |
-
|
176 |
-
# Calculate rep metrics
|
177 |
-
rom = start_angle - end_angle # Range of Motion
|
178 |
-
tempo = end_time - start_time # Duration of the rep
|
179 |
-
smoothness = np.std([start_angle, end_angle]) # Dummy smoothness metric
|
180 |
-
rep_data.append({"ROM": rom, "Tempo": tempo, "Smoothness": smoothness})
|
181 |
-
|
182 |
-
# Analyze the rep using Isolation Forest
|
183 |
-
feedback = analyze_single_rep(rep_data[-1], rep_data)
|
184 |
-
|
185 |
-
# Wireframe color based on form
|
186 |
-
wireframe_color = (0, 255, 0) if stage == "up" or stage == "down" else (0, 0, 255)
|
187 |
-
|
188 |
-
# Draw wireframe
|
189 |
-
mp_drawing.draw_landmarks(
|
190 |
-
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
191 |
-
mp_drawing.DrawingSpec(color=wireframe_color, thickness=5, circle_radius=4),
|
192 |
-
mp_drawing.DrawingSpec(color=wireframe_color, thickness=5, circle_radius=4)
|
193 |
-
)
|
194 |
-
|
195 |
-
# Display reps, stage, timer, and feedback
|
196 |
-
draw_text_with_background(image, f"Reps: {counter}", (50, 150),
|
197 |
-
cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 255, 255), 5, (0, 0, 0))
|
198 |
-
draw_text_with_background(image, f"Stage: {stage if stage else 'N/A'}", (50, 300),
|
199 |
-
cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 255, 255), 5, (0, 0, 0))
|
200 |
-
draw_text_with_background(image, timer_text, (1000, 50), # Timer in the top-right corner
|
201 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 3, (0, 0, 0))
|
202 |
-
draw_text_with_background(image, feedback, (50, 450),
|
203 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 3, (0, 0, 0))
|
204 |
-
|
205 |
-
# Show video feed
|
206 |
-
cv2.imshow('Workout Feedback', image)
|
207 |
-
|
208 |
-
# Break if 'q' is pressed
|
209 |
-
if cv2.waitKey(10) & 0xFF == ord('q'):
|
210 |
-
break
|
211 |
-
|
212 |
-
cap.release()
|
213 |
-
cv2.destroyAllWindows()
|
214 |
-
|
215 |
-
# Post-workout analysis
|
216 |
-
analyze_workout_with_isolation_forest(rep_data)
|
217 |
-
|
218 |
-
|
219 |
-
if __name__ == "__main__":
|
220 |
-
main()
|
221 |
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
import numpy as np
|
227 |
-
import time
|
228 |
-
from sklearn.ensemble import IsolationForest
|
229 |
-
|
230 |
-
# Mediapipe utilities
|
231 |
-
mp_drawing = mp.solutions.drawing_utils
|
232 |
-
mp_pose = mp.solutions.pose
|
233 |
-
|
234 |
-
|
235 |
-
# Function to calculate lateral raise angle
|
236 |
-
def calculate_angle_for_lateral_raise(shoulder, wrist):
|
237 |
-
"""
|
238 |
-
Calculate the angle of the arm relative to the horizontal plane
|
239 |
-
passing through the shoulder.
|
240 |
-
"""
|
241 |
-
horizontal_reference = np.array([1, 0]) # Horizontal vector
|
242 |
-
arm_vector = np.array([wrist[0] - shoulder[0], wrist[1] - shoulder[1]])
|
243 |
-
dot_product = np.dot(horizontal_reference, arm_vector)
|
244 |
-
magnitude_reference = np.linalg.norm(horizontal_reference)
|
245 |
-
magnitude_arm = np.linalg.norm(arm_vector)
|
246 |
-
if magnitude_arm == 0 or magnitude_reference == 0:
|
247 |
-
return 0
|
248 |
-
cos_angle = dot_product / (magnitude_reference * magnitude_arm)
|
249 |
-
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
|
250 |
-
return np.degrees(angle)
|
251 |
-
|
252 |
-
|
253 |
-
# Function to draw text with a background
|
254 |
-
def draw_text_with_background(image, text, position, font, font_scale, color, thickness, bg_color, padding=10):
|
255 |
-
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
|
256 |
-
text_x, text_y = position
|
257 |
-
box_coords = (
|
258 |
-
(text_x - padding, text_y - padding),
|
259 |
-
(text_x + text_size[0] + padding, text_y + text_size[1] + padding),
|
260 |
-
)
|
261 |
-
cv2.rectangle(image, box_coords[0], box_coords[1], bg_color, cv2.FILLED)
|
262 |
-
cv2.putText(image, text, (text_x, text_y + text_size[1]), font, font_scale, color, thickness)
|
263 |
-
|
264 |
-
|
265 |
-
# Function to check if all required joints are visible
|
266 |
-
def are_key_joints_visible(landmarks, visibility_threshold=0.5):
|
267 |
-
"""
|
268 |
-
Ensure that all required joints are visible based on their visibility scores.
|
269 |
-
"""
|
270 |
-
required_joints = [
|
271 |
-
mp_pose.PoseLandmark.LEFT_SHOULDER.value,
|
272 |
-
mp_pose.PoseLandmark.RIGHT_SHOULDER.value,
|
273 |
-
mp_pose.PoseLandmark.LEFT_WRIST.value,
|
274 |
-
mp_pose.PoseLandmark.RIGHT_WRIST.value,
|
275 |
-
]
|
276 |
-
for joint in required_joints:
|
277 |
-
if landmarks[joint].visibility < visibility_threshold:
|
278 |
-
return False
|
279 |
-
return True
|
280 |
-
|
281 |
-
|
282 |
-
# Real-time feedback for single rep
|
283 |
-
def analyze_single_rep(rep, rep_data):
|
284 |
-
"""Provide actionable feedback for a single rep."""
|
285 |
-
feedback = []
|
286 |
-
|
287 |
-
# Calculate averages from previous reps
|
288 |
-
avg_rom = np.mean([r["ROM"] for r in rep_data]) if rep_data else 0
|
289 |
-
avg_tempo = np.mean([r["Tempo"] for r in rep_data]) if rep_data else 0
|
290 |
-
|
291 |
-
# Dynamic tempo thresholds
|
292 |
-
lower_tempo_threshold = 2.0 # Minimum grace threshold for faster tempo
|
293 |
-
upper_tempo_threshold = 9.0 # Maximum grace threshold for slower tempo
|
294 |
-
|
295 |
-
# Adjust thresholds after a few reps
|
296 |
-
if len(rep_data) > 3:
|
297 |
-
lower_tempo_threshold = max(2.0, avg_tempo * 0.7)
|
298 |
-
upper_tempo_threshold = min(9.0, avg_tempo * 1.3)
|
299 |
-
|
300 |
-
# Feedback for ROM
|
301 |
-
if rep["ROM"] < 30: # Minimum ROM threshold
|
302 |
-
feedback.append("Lift arm higher")
|
303 |
-
elif rep_data and rep["ROM"] < avg_rom * 0.8:
|
304 |
-
feedback.append("Increase ROM")
|
305 |
-
|
306 |
-
# Feedback for Tempo
|
307 |
-
if rep["Tempo"] < lower_tempo_threshold: # Tempo too fast
|
308 |
-
feedback.append("Slow down")
|
309 |
-
elif rep["Tempo"] > upper_tempo_threshold: # Tempo too slow
|
310 |
-
feedback.append("Speed up")
|
311 |
-
|
312 |
-
return feedback
|
313 |
-
|
314 |
-
|
315 |
-
# Post-workout feedback function
|
316 |
-
def analyze_workout_with_isolation_forest(rep_data):
|
317 |
-
if not rep_data:
|
318 |
-
print("No reps completed.")
|
319 |
-
return
|
320 |
-
|
321 |
-
print("\n--- Post-Workout Summary ---")
|
322 |
-
|
323 |
-
# Filter valid reps for recalculating thresholds
|
324 |
-
valid_reps = [rep for rep in rep_data if rep["ROM"] > 20] # Ignore very low ROM reps
|
325 |
-
|
326 |
-
if not valid_reps:
|
327 |
-
print("No valid reps to analyze.")
|
328 |
-
return
|
329 |
-
|
330 |
-
features = np.array([[rep["ROM"], rep["Tempo"]] for rep in valid_reps])
|
331 |
-
|
332 |
-
avg_rom = np.mean(features[:, 0])
|
333 |
-
avg_tempo = np.mean(features[:, 1])
|
334 |
-
std_rom = np.std(features[:, 0])
|
335 |
-
std_tempo = np.std(features[:, 1])
|
336 |
-
|
337 |
-
# Adjusted bounds for anomalies
|
338 |
-
rom_lower_bound = max(20, avg_rom - std_rom * 2)
|
339 |
-
tempo_lower_bound = max(1.0, avg_tempo - std_tempo * 2)
|
340 |
-
tempo_upper_bound = min(10.0, avg_tempo + std_tempo * 2)
|
341 |
-
|
342 |
-
print(f"ROM Lower Bound: {rom_lower_bound}")
|
343 |
-
print(f"Tempo Bounds: {tempo_lower_bound}-{tempo_upper_bound}")
|
344 |
-
|
345 |
-
# Anomaly detection
|
346 |
-
for i, rep in enumerate(valid_reps, 1):
|
347 |
-
feedback = []
|
348 |
-
if rep["ROM"] < rom_lower_bound:
|
349 |
-
feedback.append("Low ROM")
|
350 |
-
if rep["Tempo"] < tempo_lower_bound:
|
351 |
-
feedback.append("Too Fast")
|
352 |
-
elif rep["Tempo"] > tempo_upper_bound:
|
353 |
-
feedback.append("Too Slow")
|
354 |
-
|
355 |
-
if feedback:
|
356 |
-
print(f"Rep {i}: Anomalous | Feedback: {', '.join(feedback[:1])}")
|
357 |
-
|
358 |
-
# Use Isolation Forest for secondary anomaly detection
|
359 |
-
model = IsolationForest(contamination=0.1, random_state=42) # Reduced contamination
|
360 |
-
predictions = model.fit_predict(features)
|
361 |
-
|
362 |
-
for i, prediction in enumerate(predictions, 1):
|
363 |
-
if prediction == -1: # Outlier
|
364 |
-
print(f"Rep {i}: Isolation Forest flagged this rep as anomalous.")
|
365 |
-
|
366 |
-
|
367 |
-
# Main workout tracking function
|
368 |
-
def main():
|
369 |
-
cap = cv2.VideoCapture(0)
|
370 |
-
counter = 0 # Rep counter
|
371 |
-
stage = None # Movement stage
|
372 |
-
feedback = [] # Real-time feedback for the video feed
|
373 |
-
rep_data = [] # Store metrics for each rep
|
374 |
-
angles_during_rep = [] # Track angles during a single rep
|
375 |
-
workout_start_time = None # Timer start
|
376 |
-
|
377 |
-
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
|
378 |
-
while cap.isOpened():
|
379 |
-
ret, frame = cap.read()
|
380 |
-
if not ret:
|
381 |
-
print("Failed to grab frame.")
|
382 |
-
break
|
383 |
-
|
384 |
-
# Initialize workout start time
|
385 |
-
if workout_start_time is None:
|
386 |
-
workout_start_time = time.time()
|
387 |
-
|
388 |
-
# Timer
|
389 |
-
elapsed_time = time.time() - workout_start_time
|
390 |
-
timer_text = f"Timer: {int(elapsed_time)}s"
|
391 |
-
|
392 |
-
# Convert the image to RGB
|
393 |
-
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
394 |
-
image.flags.writeable = False
|
395 |
-
results = pose.process(image)
|
396 |
-
|
397 |
-
# Convert back to BGR
|
398 |
-
image.flags.writeable = True
|
399 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
400 |
-
|
401 |
-
# Check if pose landmarks are detected
|
402 |
-
if results.pose_landmarks:
|
403 |
-
landmarks = results.pose_landmarks.landmark
|
404 |
-
|
405 |
-
# Check if key joints are visible
|
406 |
-
if not are_key_joints_visible(landmarks):
|
407 |
-
draw_text_with_background(
|
408 |
-
image, "Ensure all joints are visible", (50, 50),
|
409 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255)
|
410 |
-
)
|
411 |
-
cv2.imshow("Lateral Raise Tracker", image)
|
412 |
-
continue
|
413 |
-
|
414 |
-
# Extract key joints
|
415 |
-
left_shoulder = [
|
416 |
-
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
417 |
-
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y,
|
418 |
-
]
|
419 |
-
left_wrist = [
|
420 |
-
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
421 |
-
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y,
|
422 |
-
]
|
423 |
-
|
424 |
-
# Calculate angle for lateral raise
|
425 |
-
angle = calculate_angle_for_lateral_raise(left_shoulder, left_wrist)
|
426 |
-
|
427 |
-
# Track angles during a rep
|
428 |
-
if stage == "up" or stage == "down":
|
429 |
-
angles_during_rep.append(angle)
|
430 |
-
|
431 |
-
# Stage logic for counting reps
|
432 |
-
if angle < 20 and stage != "down":
|
433 |
-
stage = "down"
|
434 |
-
if counter == 10: # Stop on the down stage of the 10th rep
|
435 |
-
print("Workout complete! 10 reps reached.")
|
436 |
-
break
|
437 |
-
|
438 |
-
# Calculate ROM for the completed rep
|
439 |
-
if len(angles_during_rep) > 1:
|
440 |
-
rom = max(angles_during_rep) - min(angles_during_rep)
|
441 |
-
else:
|
442 |
-
rom = 0.0
|
443 |
-
|
444 |
-
tempo = elapsed_time
|
445 |
-
print(f"Rep {counter + 1}: ROM={rom:.2f}, Tempo={tempo:.2f}s")
|
446 |
-
|
447 |
-
# Record metrics for the rep
|
448 |
-
rep_data.append({
|
449 |
-
"ROM": rom,
|
450 |
-
"Tempo": tempo,
|
451 |
-
})
|
452 |
-
|
453 |
-
# Reset angles and timer for the next rep
|
454 |
-
angles_during_rep = []
|
455 |
-
workout_start_time = time.time() # Reset timer
|
456 |
-
|
457 |
-
if 70 <= angle <= 110 and stage == "down":
|
458 |
-
stage = "up"
|
459 |
-
counter += 1
|
460 |
-
|
461 |
-
# Analyze feedback
|
462 |
-
feedback = analyze_single_rep(rep_data[-1], rep_data)
|
463 |
-
|
464 |
-
# Determine wireframe color
|
465 |
-
wireframe_color = (0, 255, 0) if not feedback else (0, 0, 255)
|
466 |
-
|
467 |
-
# Display feedback
|
468 |
-
draw_text_with_background(image, f"Reps: {counter}", (50, 50),
|
469 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
470 |
-
draw_text_with_background(image, " | ".join(feedback), (50, 120),
|
471 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
472 |
-
draw_text_with_background(image, timer_text, (50, 190),
|
473 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
474 |
-
|
475 |
-
# Render detections with wireframe color
|
476 |
-
mp_drawing.draw_landmarks(
|
477 |
-
image,
|
478 |
-
results.pose_landmarks,
|
479 |
-
mp_pose.POSE_CONNECTIONS,
|
480 |
-
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
|
481 |
-
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
|
482 |
-
)
|
483 |
-
|
484 |
-
# Display the image
|
485 |
-
cv2.imshow("Lateral Raise Tracker", image)
|
486 |
-
|
487 |
-
if cv2.waitKey(10) & 0xFF == ord("q"):
|
488 |
-
break
|
489 |
-
|
490 |
-
cap.release()
|
491 |
-
cv2.destroyAllWindows()
|
492 |
-
|
493 |
-
# Post-workout analysis
|
494 |
-
analyze_workout_with_isolation_forest(rep_data)
|
495 |
-
|
496 |
-
|
497 |
-
if __name__ == "__main__":
|
498 |
-
main()
|
499 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
|
501 |
-
def
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
import time
|
506 |
-
|
507 |
-
# Mediapipe utilities
|
508 |
-
mp_drawing = mp.solutions.drawing_utils
|
509 |
-
mp_pose = mp.solutions.pose
|
510 |
-
|
511 |
-
# Function to calculate angles
|
512 |
-
def calculate_angle(point_a, point_b, point_c):
|
513 |
-
vector_ab = np.array([point_a[0] - point_b[0], point_a[1] - point_b[1]])
|
514 |
-
vector_cb = np.array([point_c[0] - point_b[0], point_c[1] - point_b[1]])
|
515 |
-
dot_product = np.dot(vector_ab, vector_cb)
|
516 |
-
magnitude_ab = np.linalg.norm(vector_ab)
|
517 |
-
magnitude_cb = np.linalg.norm(vector_cb)
|
518 |
-
if magnitude_ab == 0 or magnitude_cb == 0:
|
519 |
-
return 0
|
520 |
-
cos_angle = dot_product / (magnitude_ab * magnitude_cb)
|
521 |
-
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
|
522 |
-
return np.degrees(angle)
|
523 |
|
|
|
|
|
|
|
524 |
|
525 |
-
|
526 |
-
|
527 |
-
required_joints = [
|
528 |
-
mp_pose.PoseLandmark.LEFT_SHOULDER.value,
|
529 |
-
mp_pose.PoseLandmark.RIGHT_SHOULDER.value,
|
530 |
-
mp_pose.PoseLandmark.LEFT_ELBOW.value,
|
531 |
-
mp_pose.PoseLandmark.RIGHT_ELBOW.value,
|
532 |
-
mp_pose.PoseLandmark.LEFT_WRIST.value,
|
533 |
-
mp_pose.PoseLandmark.RIGHT_WRIST.value,
|
534 |
-
]
|
535 |
-
for joint in required_joints:
|
536 |
-
if landmarks[joint].visibility < visibility_threshold:
|
537 |
-
return False
|
538 |
-
return True
|
539 |
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
|
544 |
-
text_x, text_y = position
|
545 |
-
box_coords = (
|
546 |
-
(text_x - padding, text_y - padding),
|
547 |
-
(text_x + text_size[0] + padding, text_y + text_size[1] + padding),
|
548 |
-
)
|
549 |
-
cv2.rectangle(image, box_coords[0], box_coords[1], bg_color, cv2.FILLED)
|
550 |
-
cv2.putText(image, text, (text_x, text_y + text_size[1]), font, font_scale, color, thickness)
|
551 |
-
|
552 |
-
|
553 |
-
# Main workout tracking function
|
554 |
-
def main():
|
555 |
-
cap = cv2.VideoCapture(0)
|
556 |
-
counter = 0
|
557 |
-
stage = None
|
558 |
-
feedback = ""
|
559 |
-
workout_start_time = None
|
560 |
-
rep_start_time = None
|
561 |
-
|
562 |
-
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
|
563 |
-
while cap.isOpened():
|
564 |
-
ret, frame = cap.read()
|
565 |
-
if not ret:
|
566 |
-
print("Failed to grab frame.")
|
567 |
-
break
|
568 |
-
|
569 |
-
# Initialize workout start time
|
570 |
-
if workout_start_time is None:
|
571 |
-
workout_start_time = time.time()
|
572 |
-
|
573 |
-
# Timer
|
574 |
-
elapsed_time = time.time() - workout_start_time
|
575 |
-
timer_text = f"Timer: {int(elapsed_time)}s"
|
576 |
-
|
577 |
-
# Convert the image to RGB
|
578 |
-
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
579 |
-
image.flags.writeable = False
|
580 |
-
results = pose.process(image)
|
581 |
-
|
582 |
-
# Convert back to BGR
|
583 |
-
image.flags.writeable = True
|
584 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
585 |
-
|
586 |
-
# Check if pose landmarks are detected
|
587 |
-
if results.pose_landmarks:
|
588 |
-
landmarks = results.pose_landmarks.landmark
|
589 |
-
|
590 |
-
# Check if key joints are visible
|
591 |
-
if not are_key_joints_visible(landmarks):
|
592 |
-
feedback = "Ensure all joints are visible"
|
593 |
-
draw_text_with_background(
|
594 |
-
image, feedback, (50, 50),
|
595 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255)
|
596 |
-
)
|
597 |
-
cv2.imshow("Shoulder Press Tracker", image)
|
598 |
-
continue
|
599 |
-
|
600 |
-
# Extract key joints for both arms
|
601 |
-
left_shoulder = [
|
602 |
-
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
603 |
-
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y,
|
604 |
-
]
|
605 |
-
left_elbow = [
|
606 |
-
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
|
607 |
-
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y,
|
608 |
-
]
|
609 |
-
left_wrist = [
|
610 |
-
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
611 |
-
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y,
|
612 |
-
]
|
613 |
-
|
614 |
-
right_shoulder = [
|
615 |
-
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x,
|
616 |
-
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y,
|
617 |
-
]
|
618 |
-
right_elbow = [
|
619 |
-
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].x,
|
620 |
-
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].y,
|
621 |
-
]
|
622 |
-
right_wrist = [
|
623 |
-
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x,
|
624 |
-
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y,
|
625 |
-
]
|
626 |
-
|
627 |
-
# Calculate angles
|
628 |
-
left_elbow_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)
|
629 |
-
right_elbow_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)
|
630 |
-
|
631 |
-
# Check starting and ending positions
|
632 |
-
if 80 <= left_elbow_angle <= 100 and 80 <= right_elbow_angle <= 100 and stage != "down":
|
633 |
-
stage = "down"
|
634 |
-
if counter == 10:
|
635 |
-
feedback = "Workout complete! 10 reps done."
|
636 |
-
draw_text_with_background(image, feedback, (50, 120),
|
637 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255))
|
638 |
-
cv2.imshow("Shoulder Press Tracker", image)
|
639 |
-
break
|
640 |
-
if rep_start_time is not None:
|
641 |
-
tempo = time.time() - rep_start_time
|
642 |
-
feedback = f"Rep {counter} completed! Tempo: {tempo:.2f}s"
|
643 |
-
rep_start_time = None
|
644 |
-
elif left_elbow_angle > 160 and right_elbow_angle > 160 and stage == "down":
|
645 |
-
stage = "up"
|
646 |
-
counter += 1
|
647 |
-
rep_start_time = time.time()
|
648 |
-
|
649 |
-
# Wireframe color
|
650 |
-
wireframe_color = (0, 255, 0) if "completed" in feedback or "Good" in feedback else (0, 0, 255)
|
651 |
-
|
652 |
-
# Display feedback
|
653 |
-
draw_text_with_background(image, f"Reps: {counter}", (50, 50),
|
654 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
655 |
-
draw_text_with_background(image, feedback, (50, 120),
|
656 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
657 |
-
draw_text_with_background(image, timer_text, (50, 190),
|
658 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
659 |
-
|
660 |
-
# Render detections with wireframe color
|
661 |
-
mp_drawing.draw_landmarks(
|
662 |
-
image,
|
663 |
-
results.pose_landmarks,
|
664 |
-
mp_pose.POSE_CONNECTIONS,
|
665 |
-
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
|
666 |
-
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
|
667 |
-
)
|
668 |
-
|
669 |
-
# Display the image
|
670 |
-
cv2.imshow("Shoulder Press Tracker", image)
|
671 |
-
|
672 |
-
if cv2.waitKey(10) & 0xFF == ord("q"):
|
673 |
-
break
|
674 |
-
|
675 |
-
cap.release()
|
676 |
-
cv2.destroyAllWindows()
|
677 |
-
|
678 |
-
|
679 |
-
if __name__ == "__main__":
|
680 |
-
main()
|
681 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
682 |
|
683 |
-
|
684 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
685 |
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
''',
|
708 |
-
unsafe_allow_html=True
|
709 |
-
)
|
710 |
|
711 |
-
|
712 |
-
|
713 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
714 |
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
|
728 |
-
#
|
729 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
730 |
|
731 |
-
#
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
744 |
|
745 |
-
|
746 |
-
|
747 |
-
st.markdown("**Note**: Close the workout window or press 'q' in the camera feed to stop the workout.")
|
748 |
|
|
|
2 |
import cv2
|
3 |
import mediapipe as mp
|
4 |
import numpy as np
|
5 |
+
from streamlit_webrtc import webrtc_streamer, VideoTransformerBase
|
6 |
+
import av
|
7 |
+
import threading
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from typing import List
|
10 |
|
11 |
+
# Mediapipe setup
|
12 |
+
mp_drawing = mp.solutions.drawing_utils
|
13 |
+
mp_pose = mp.solutions.pose
|
14 |
|
15 |
+
# Custom CSS
|
16 |
+
st.markdown("""
|
17 |
+
<style>
|
18 |
+
.main {
|
19 |
+
background: linear-gradient(135deg, #001f3f 0%, #00b4d8 100%);
|
20 |
+
}
|
21 |
+
.stButton > button {
|
22 |
+
background-color: #00b4d8;
|
23 |
+
color: white;
|
24 |
+
border: none;
|
25 |
+
padding: 0.5rem 2rem;
|
26 |
+
border-radius: 5px;
|
27 |
+
margin: 0.5rem;
|
28 |
+
transition: all 0.3s;
|
29 |
+
}
|
30 |
+
.stButton > button:hover {
|
31 |
+
background-color: #0077b6;
|
32 |
+
}
|
33 |
+
h1, h2, h3 {
|
34 |
+
color: #001f3f;
|
35 |
+
}
|
36 |
+
.workout-container {
|
37 |
+
background: rgba(0, 180, 216, 0.1);
|
38 |
+
padding: 2rem;
|
39 |
+
border-radius: 10px;
|
40 |
+
margin: 1rem 0;
|
41 |
+
}
|
42 |
+
.feedback-text {
|
43 |
+
background: rgba(0, 31, 63, 0.1);
|
44 |
+
padding: 1rem;
|
45 |
+
border-radius: 5px;
|
46 |
+
margin: 1rem 0;
|
47 |
+
}
|
48 |
+
</style>
|
49 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
@dataclass
|
52 |
+
class ExerciseState:
|
53 |
+
counter: int = 0
|
54 |
+
stage: str = None
|
55 |
+
feedback: str = ""
|
56 |
|
57 |
+
# Global state
|
58 |
+
state = ExerciseState()
|
59 |
+
lock = threading.Lock()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
def calculate_angle(a, b, c):
|
62 |
+
"""Calculate angle between three points."""
|
63 |
+
a = np.array(a)
|
64 |
+
b = np.array(b)
|
65 |
+
c = np.array(c)
|
66 |
+
|
67 |
+
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
|
68 |
+
angle = np.abs(np.degrees(radians))
|
69 |
+
|
70 |
+
if angle > 180.0:
|
71 |
+
angle = 360 - angle
|
72 |
+
return angle
|
73 |
|
74 |
+
def calculate_lateral_raise_angle(shoulder, wrist):
|
75 |
+
"""Calculate angle for lateral raise."""
|
76 |
+
horizontal_reference = np.array([1, 0])
|
77 |
+
arm_vector = np.array([wrist[0] - shoulder[0], wrist[1] - shoulder[1]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
dot_product = np.dot(horizontal_reference, arm_vector)
|
80 |
+
magnitude_reference = np.linalg.norm(horizontal_reference)
|
81 |
+
magnitude_arm = np.linalg.norm(arm_vector)
|
82 |
|
83 |
+
if magnitude_arm == 0 or magnitude_reference == 0:
|
84 |
+
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
cos_angle = dot_product / (magnitude_reference * magnitude_arm)
|
87 |
+
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
|
88 |
+
return np.degrees(angle)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
class VideoTransformer(VideoTransformerBase):
|
91 |
+
def __init__(self):
|
92 |
+
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
93 |
+
self.workout_type = "bicep_curl" # Default workout
|
94 |
+
|
95 |
+
def process_bicep_curl(self, landmarks):
|
96 |
+
"""Process frame for bicep curl exercise."""
|
97 |
+
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
98 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
|
99 |
+
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
|
100 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
|
101 |
+
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
102 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
|
103 |
+
|
104 |
+
angle = calculate_angle(shoulder, elbow, wrist)
|
105 |
+
|
106 |
+
with lock:
|
107 |
+
if angle > 160 and state.stage != "down":
|
108 |
+
state.stage = "down"
|
109 |
+
state.feedback = "Lower the weight"
|
110 |
+
elif angle < 40 and state.stage == "down":
|
111 |
+
state.stage = "up"
|
112 |
+
state.counter += 1
|
113 |
+
state.feedback = f"Good rep! Count: {state.counter}"
|
114 |
+
|
115 |
+
return angle
|
116 |
|
117 |
+
def process_lateral_raise(self, landmarks):
|
118 |
+
"""Process frame for lateral raise exercise."""
|
119 |
+
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
120 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
|
121 |
+
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
122 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
|
123 |
+
|
124 |
+
angle = calculate_lateral_raise_angle(shoulder, wrist)
|
125 |
+
|
126 |
+
with lock:
|
127 |
+
if angle < 20 and state.stage != "down":
|
128 |
+
state.stage = "down"
|
129 |
+
state.feedback = "Raise your arms"
|
130 |
+
elif 70 <= angle <= 110 and state.stage == "down":
|
131 |
+
state.stage = "up"
|
132 |
+
state.counter += 1
|
133 |
+
state.feedback = f"Good rep! Count: {state.counter}"
|
134 |
+
|
135 |
+
return angle
|
136 |
|
137 |
+
def process_shoulder_press(self, landmarks):
|
138 |
+
"""Process frame for shoulder press exercise."""
|
139 |
+
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
140 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
|
141 |
+
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
|
142 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
|
143 |
+
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
144 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
|
145 |
+
|
146 |
+
angle = calculate_angle(shoulder, elbow, wrist)
|
147 |
+
|
148 |
+
with lock:
|
149 |
+
if 80 <= angle <= 100 and state.stage != "down":
|
150 |
+
state.stage = "down"
|
151 |
+
state.feedback = "Press up!"
|
152 |
+
elif angle > 160 and state.stage == "down":
|
153 |
+
state.stage = "up"
|
154 |
+
state.counter += 1
|
155 |
+
state.feedback = f"Good rep! Count: {state.counter}"
|
156 |
+
|
157 |
+
return angle
|
|
|
|
|
|
|
158 |
|
159 |
+
def recv(self, frame):
|
160 |
+
img = frame.to_ndarray(format="bgr24")
|
161 |
+
|
162 |
+
# Process the image
|
163 |
+
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
164 |
+
results = self.pose.process(image)
|
165 |
+
|
166 |
+
if results.pose_landmarks:
|
167 |
+
# Draw pose landmarks
|
168 |
+
mp_drawing.draw_landmarks(
|
169 |
+
img, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
170 |
+
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
171 |
+
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2)
|
172 |
+
)
|
173 |
+
|
174 |
+
# Process based on workout type
|
175 |
+
if self.workout_type == "bicep_curl":
|
176 |
+
angle = self.process_bicep_curl(results.pose_landmarks.landmark)
|
177 |
+
elif self.workout_type == "lateral_raise":
|
178 |
+
angle = self.process_lateral_raise(results.pose_landmarks.landmark)
|
179 |
+
else: # shoulder_press
|
180 |
+
angle = self.process_shoulder_press(results.pose_landmarks.landmark)
|
181 |
+
|
182 |
+
# Draw angle and counter
|
183 |
+
cv2.putText(img, f"Angle: {angle:.2f}", (10, 30),
|
184 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
185 |
+
cv2.putText(img, f"Counter: {state.counter}", (10, 70),
|
186 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
187 |
+
cv2.putText(img, f"Feedback: {state.feedback}", (10, 110),
|
188 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
189 |
+
|
190 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
191 |
|
192 |
+
def main():
|
193 |
+
st.title("🏋️♂️ AI Workout Trainer")
|
194 |
+
|
195 |
+
st.markdown("""
|
196 |
+
<div class='workout-container'>
|
197 |
+
Welcome to your AI Workout Trainer! This app will help you perfect your form
|
198 |
+
and track your exercises in real-time. Choose a workout and follow the feedback
|
199 |
+
to improve your technique.
|
200 |
+
</div>
|
201 |
+
""", unsafe_allow_html=True)
|
202 |
+
|
203 |
+
# Workout selection
|
204 |
+
workout_options = {
|
205 |
+
"Bicep Curl": "bicep_curl",
|
206 |
+
"Lateral Raise": "lateral_raise",
|
207 |
+
"Shoulder Press": "shoulder_press"
|
208 |
+
}
|
209 |
+
|
210 |
+
selected_workout = st.selectbox(
|
211 |
+
"Choose your workout:",
|
212 |
+
list(workout_options.keys())
|
213 |
+
)
|
214 |
+
|
215 |
+
# Reset state when workout changes
|
216 |
+
if 'last_workout' not in st.session_state or st.session_state.last_workout != selected_workout:
|
217 |
+
with lock:
|
218 |
+
state.counter = 0
|
219 |
+
state.stage = None
|
220 |
+
state.feedback = ""
|
221 |
+
st.session_state.last_workout = selected_workout
|
222 |
|
223 |
+
# Exercise descriptions
|
224 |
+
descriptions = {
|
225 |
+
"Bicep Curl": "Focus on keeping your upper arm still and curl the weight up smoothly.",
|
226 |
+
"Lateral Raise": "Raise your arms to shoulder height, keeping them slightly bent.",
|
227 |
+
"Shoulder Press": "Press the weight overhead, fully extending your arms."
|
228 |
+
}
|
229 |
+
|
230 |
+
st.markdown(f"""
|
231 |
+
<div class='workout-container'>
|
232 |
+
<h3>{selected_workout}</h3>
|
233 |
+
<p>{descriptions[selected_workout]}</p>
|
234 |
+
</div>
|
235 |
+
""", unsafe_allow_html=True)
|
236 |
|
237 |
+
# Initialize WebRTC streamer
|
238 |
+
webrtc_ctx = webrtc_streamer(
|
239 |
+
key="workout",
|
240 |
+
video_transformer_factory=VideoTransformer,
|
241 |
+
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
|
242 |
+
)
|
243 |
+
|
244 |
+
if webrtc_ctx.video_transformer:
|
245 |
+
webrtc_ctx.video_transformer.workout_type = workout_options[selected_workout]
|
246 |
+
|
247 |
+
# Display feedback
|
248 |
+
feedback_placeholder = st.empty()
|
249 |
+
if webrtc_ctx.state.playing:
|
250 |
+
feedback_placeholder.markdown(f"""
|
251 |
+
<div class='feedback-text'>
|
252 |
+
<h4>Current Exercise: {selected_workout}</h4>
|
253 |
+
<p>Reps Completed: {state.counter}</p>
|
254 |
+
<p>Feedback: {state.feedback}</p>
|
255 |
+
</div>
|
256 |
+
""", unsafe_allow_html=True)
|
257 |
|
258 |
+
if __name__ == "__main__":
|
259 |
+
main()
|
|
|
260 |
|