Spaces:
Sleeping
Sleeping
Update1
Browse files
app.py
CHANGED
@@ -0,0 +1,720 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Consolidated Streamlit App
|
2 |
+
import streamlit as st
|
3 |
+
import subprocess
|
4 |
+
|
5 |
+
# Title and introduction
|
6 |
+
st.title("Workout Tracker")
|
7 |
+
st.markdown("""
|
8 |
+
Welcome to the **Workout Tracker App**!
|
9 |
+
Select your desired workout below, and the app will guide you through the exercise with real-time feedback.
|
10 |
+
""")
|
11 |
+
|
12 |
+
# Workout options
|
13 |
+
st.header("Choose Your Workout")
|
14 |
+
workout_option = st.selectbox(
|
15 |
+
"Available Workouts:",
|
16 |
+
["Bicep Curl", "Lateral Raise", "Shoulder Press"]
|
17 |
+
)
|
18 |
+
|
19 |
+
# Button to start the workout
|
20 |
+
if st.button("Start Workout"):
|
21 |
+
st.write(f"Starting {workout_option}...")
|
22 |
+
|
23 |
+
# Map the workout to the corresponding script
|
24 |
+
workout_scripts = {
|
25 |
+
"Bicep Curl": "bicep_curl.py",
|
26 |
+
"Lateral Raise": "lateral_raise.py",
|
27 |
+
"Shoulder Press": "shoulder_press.py",
|
28 |
+
}
|
29 |
+
|
30 |
+
selected_script = workout_scripts.get(workout_option)
|
31 |
+
|
32 |
+
# Run the corresponding script
|
33 |
+
try:
|
34 |
+
subprocess.run(["python", selected_script], check=True)
|
35 |
+
st.success(f"{workout_option} workout completed! Check the feedback on your terminal.")
|
36 |
+
except subprocess.CalledProcessError as e:
|
37 |
+
st.error(f"An error occurred while running {workout_option}. Please try again.")
|
38 |
+
except FileNotFoundError:
|
39 |
+
st.error(f"Workout script {selected_script} not found! Ensure the file exists in the same directory.")
|
40 |
+
|
41 |
+
# Footer
|
42 |
+
st.markdown("""
|
43 |
+
---
|
44 |
+
**Note**: Close the workout window or press "q" in the camera feed to stop the workout.
|
45 |
+
""")
|
46 |
+
|
47 |
+
|
48 |
+
# From bicep_with_feedback.py
|
49 |
+
import cv2
|
50 |
+
import mediapipe as mp
|
51 |
+
import numpy as np
|
52 |
+
import time
|
53 |
+
from sklearn.ensemble import IsolationForest
|
54 |
+
|
55 |
+
# Mediapipe utilities
|
56 |
+
mp_drawing = mp.solutions.drawing_utils
|
57 |
+
mp_pose = mp.solutions.pose
|
58 |
+
|
59 |
+
|
60 |
+
# Function to calculate angles between three points
|
61 |
+
def calculate_angle(a, b, c):
|
62 |
+
a = np.array(a)
|
63 |
+
b = np.array(b)
|
64 |
+
c = np.array(c)
|
65 |
+
|
66 |
+
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
|
67 |
+
angle = np.abs(np.degrees(radians))
|
68 |
+
if angle > 180.0:
|
69 |
+
angle = 360 - angle
|
70 |
+
return angle
|
71 |
+
|
72 |
+
|
73 |
+
# Function to draw text with a background
|
74 |
+
def draw_text_with_background(image, text, position, font, font_scale, color, thickness, bg_color, padding=10):
|
75 |
+
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
|
76 |
+
text_x, text_y = position
|
77 |
+
box_coords = (
|
78 |
+
(text_x - padding, text_y - padding),
|
79 |
+
(text_x + text_size[0] + padding, text_y + text_size[1] + padding),
|
80 |
+
)
|
81 |
+
cv2.rectangle(image, box_coords[0], box_coords[1], bg_color, cv2.FILLED)
|
82 |
+
cv2.putText(image, text, (text_x, text_y + text_size[1]), font, font_scale, color, thickness)
|
83 |
+
|
84 |
+
|
85 |
+
# Real-time feedback for single rep
|
86 |
+
def analyze_single_rep(rep, rep_data):
|
87 |
+
"""Provide actionable feedback for a single rep."""
|
88 |
+
feedback = []
|
89 |
+
avg_rom = np.mean([r["ROM"] for r in rep_data])
|
90 |
+
avg_tempo = np.mean([r["Tempo"] for r in rep_data])
|
91 |
+
avg_smoothness = np.mean([r["Smoothness"] for r in rep_data])
|
92 |
+
|
93 |
+
if rep["ROM"] < avg_rom * 0.8:
|
94 |
+
feedback.append("Extend arm more")
|
95 |
+
if rep["Tempo"] < avg_tempo * 0.8:
|
96 |
+
feedback.append("Slow down")
|
97 |
+
if rep["Smoothness"] > avg_smoothness * 1.2:
|
98 |
+
feedback.append("Move smoothly")
|
99 |
+
|
100 |
+
return " | ".join(feedback) if feedback else "Good rep!"
|
101 |
+
|
102 |
+
|
103 |
+
# Post-workout feedback function with Isolation Forest
|
104 |
+
def analyze_workout_with_isolation_forest(rep_data):
|
105 |
+
if not rep_data:
|
106 |
+
print("No reps completed.")
|
107 |
+
return
|
108 |
+
|
109 |
+
print("\n--- Post-Workout Summary ---")
|
110 |
+
|
111 |
+
# Convert rep_data to a feature matrix
|
112 |
+
features = np.array([[rep["ROM"], rep["Tempo"], rep["Smoothness"]] for rep in rep_data])
|
113 |
+
|
114 |
+
# Train Isolation Forest
|
115 |
+
model = IsolationForest(contamination=0.2, random_state=42)
|
116 |
+
predictions = model.fit_predict(features)
|
117 |
+
|
118 |
+
# Analyze reps
|
119 |
+
for i, (rep, prediction) in enumerate(zip(rep_data, predictions), 1):
|
120 |
+
status = "Good" if prediction == 1 else "Anomalous"
|
121 |
+
reason = []
|
122 |
+
if prediction == -1: # If anomalous
|
123 |
+
if rep["ROM"] < np.mean(features[:, 0]) - np.std(features[:, 0]):
|
124 |
+
reason.append("Low ROM")
|
125 |
+
if rep["Tempo"] < np.mean(features[:, 1]) - np.std(features[:, 1]):
|
126 |
+
reason.append("Too Fast")
|
127 |
+
if rep["Smoothness"] > np.mean(features[:, 2]) + np.std(features[:, 2]):
|
128 |
+
reason.append("Jerky Movement")
|
129 |
+
reason_str = ", ".join(reason) if reason else "None"
|
130 |
+
print(f"Rep {i}: {status} | ROM: {rep['ROM']:.2f}, Tempo: {rep['Tempo']:.2f}s, Smoothness: {rep['Smoothness']:.2f} | Reason: {reason_str}")
|
131 |
+
|
132 |
+
|
133 |
+
# Main workout tracking function
|
134 |
+
def main():
|
135 |
+
cap = cv2.VideoCapture(0)
|
136 |
+
counter = 0 # Rep counter
|
137 |
+
stage = None # Movement stage
|
138 |
+
max_reps = 10
|
139 |
+
rep_data = [] # Store metrics for each rep
|
140 |
+
feedback = "" # Real-time feedback for the video feed
|
141 |
+
workout_start_time = None # Timer start
|
142 |
+
|
143 |
+
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
|
144 |
+
while cap.isOpened():
|
145 |
+
ret, frame = cap.read()
|
146 |
+
if not ret:
|
147 |
+
print("Failed to grab frame.")
|
148 |
+
break
|
149 |
+
|
150 |
+
# Initialize workout start time
|
151 |
+
if workout_start_time is None:
|
152 |
+
workout_start_time = time.time()
|
153 |
+
|
154 |
+
# Timer
|
155 |
+
elapsed_time = time.time() - workout_start_time
|
156 |
+
timer_text = f"Timer: {int(elapsed_time)}s"
|
157 |
+
|
158 |
+
# Convert frame to RGB
|
159 |
+
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
160 |
+
image.flags.writeable = False
|
161 |
+
results = pose.process(image)
|
162 |
+
|
163 |
+
# Convert back to BGR
|
164 |
+
image.flags.writeable = True
|
165 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
166 |
+
|
167 |
+
# Check if pose landmarks are detected
|
168 |
+
if results.pose_landmarks:
|
169 |
+
landmarks = results.pose_landmarks.landmark
|
170 |
+
|
171 |
+
# Extract key joints
|
172 |
+
shoulder = [
|
173 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
174 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y
|
175 |
+
]
|
176 |
+
elbow = [
|
177 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
|
178 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y
|
179 |
+
]
|
180 |
+
wrist = [
|
181 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
182 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y
|
183 |
+
]
|
184 |
+
|
185 |
+
# Check visibility of key joints
|
186 |
+
visibility_threshold = 0.5
|
187 |
+
if (landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].visibility < visibility_threshold or
|
188 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].visibility < visibility_threshold or
|
189 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].visibility < visibility_threshold):
|
190 |
+
draw_text_with_background(image, "Ensure all key joints are visible!", (50, 150),
|
191 |
+
cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 5, (0, 0, 255))
|
192 |
+
cv2.imshow('Workout Feedback', image)
|
193 |
+
continue # Skip processing if joints are not visible
|
194 |
+
|
195 |
+
# Calculate the angle
|
196 |
+
angle = calculate_angle(shoulder, elbow, wrist)
|
197 |
+
|
198 |
+
# Stage logic for counting reps
|
199 |
+
if angle > 160 and stage != "down":
|
200 |
+
stage = "down"
|
201 |
+
start_time = time.time() # Start timing for the rep
|
202 |
+
start_angle = angle # Record the starting angle
|
203 |
+
|
204 |
+
# Stop the program if it's the 10th rep down stage
|
205 |
+
if counter == max_reps:
|
206 |
+
print("Workout complete at rep 10 (down stage)!")
|
207 |
+
break
|
208 |
+
elif angle < 40 and stage == "down":
|
209 |
+
stage = "up"
|
210 |
+
counter += 1
|
211 |
+
end_time = time.time() # End timing for the rep
|
212 |
+
end_angle = angle # Record the ending angle
|
213 |
+
|
214 |
+
# Calculate rep metrics
|
215 |
+
rom = start_angle - end_angle # Range of Motion
|
216 |
+
tempo = end_time - start_time # Duration of the rep
|
217 |
+
smoothness = np.std([start_angle, end_angle]) # Dummy smoothness metric
|
218 |
+
rep_data.append({"ROM": rom, "Tempo": tempo, "Smoothness": smoothness})
|
219 |
+
|
220 |
+
# Analyze the rep using Isolation Forest
|
221 |
+
feedback = analyze_single_rep(rep_data[-1], rep_data)
|
222 |
+
|
223 |
+
# Wireframe color based on form
|
224 |
+
wireframe_color = (0, 255, 0) if stage == "up" or stage == "down" else (0, 0, 255)
|
225 |
+
|
226 |
+
# Draw wireframe
|
227 |
+
mp_drawing.draw_landmarks(
|
228 |
+
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
229 |
+
mp_drawing.DrawingSpec(color=wireframe_color, thickness=5, circle_radius=4),
|
230 |
+
mp_drawing.DrawingSpec(color=wireframe_color, thickness=5, circle_radius=4)
|
231 |
+
)
|
232 |
+
|
233 |
+
# Display reps, stage, timer, and feedback
|
234 |
+
draw_text_with_background(image, f"Reps: {counter}", (50, 150),
|
235 |
+
cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 255, 255), 5, (0, 0, 0))
|
236 |
+
draw_text_with_background(image, f"Stage: {stage if stage else 'N/A'}", (50, 300),
|
237 |
+
cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 255, 255), 5, (0, 0, 0))
|
238 |
+
draw_text_with_background(image, timer_text, (1000, 50), # Timer in the top-right corner
|
239 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 3, (0, 0, 0))
|
240 |
+
draw_text_with_background(image, feedback, (50, 450),
|
241 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 3, (0, 0, 0))
|
242 |
+
|
243 |
+
# Show video feed
|
244 |
+
cv2.imshow('Workout Feedback', image)
|
245 |
+
|
246 |
+
# Break if 'q' is pressed
|
247 |
+
if cv2.waitKey(10) & 0xFF == ord('q'):
|
248 |
+
break
|
249 |
+
|
250 |
+
cap.release()
|
251 |
+
cv2.destroyAllWindows()
|
252 |
+
|
253 |
+
# Post-workout analysis
|
254 |
+
analyze_workout_with_isolation_forest(rep_data)
|
255 |
+
|
256 |
+
|
257 |
+
if __name__ == "__main__":
|
258 |
+
main()
|
259 |
+
|
260 |
+
|
261 |
+
# From lateral_raise.py
|
262 |
+
import cv2
|
263 |
+
import mediapipe as mp
|
264 |
+
import numpy as np
|
265 |
+
import time
|
266 |
+
from sklearn.ensemble import IsolationForest
|
267 |
+
|
268 |
+
# Mediapipe utilities
|
269 |
+
mp_drawing = mp.solutions.drawing_utils
|
270 |
+
mp_pose = mp.solutions.pose
|
271 |
+
|
272 |
+
|
273 |
+
# Function to calculate lateral raise angle
|
274 |
+
def calculate_angle_for_lateral_raise(shoulder, wrist):
|
275 |
+
"""
|
276 |
+
Calculate the angle of the arm relative to the horizontal plane
|
277 |
+
passing through the shoulder.
|
278 |
+
"""
|
279 |
+
horizontal_reference = np.array([1, 0]) # Horizontal vector
|
280 |
+
arm_vector = np.array([wrist[0] - shoulder[0], wrist[1] - shoulder[1]])
|
281 |
+
dot_product = np.dot(horizontal_reference, arm_vector)
|
282 |
+
magnitude_reference = np.linalg.norm(horizontal_reference)
|
283 |
+
magnitude_arm = np.linalg.norm(arm_vector)
|
284 |
+
if magnitude_arm == 0 or magnitude_reference == 0:
|
285 |
+
return 0
|
286 |
+
cos_angle = dot_product / (magnitude_reference * magnitude_arm)
|
287 |
+
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
|
288 |
+
return np.degrees(angle)
|
289 |
+
|
290 |
+
|
291 |
+
# Function to draw text with a background
|
292 |
+
def draw_text_with_background(image, text, position, font, font_scale, color, thickness, bg_color, padding=10):
|
293 |
+
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
|
294 |
+
text_x, text_y = position
|
295 |
+
box_coords = (
|
296 |
+
(text_x - padding, text_y - padding),
|
297 |
+
(text_x + text_size[0] + padding, text_y + text_size[1] + padding),
|
298 |
+
)
|
299 |
+
cv2.rectangle(image, box_coords[0], box_coords[1], bg_color, cv2.FILLED)
|
300 |
+
cv2.putText(image, text, (text_x, text_y + text_size[1]), font, font_scale, color, thickness)
|
301 |
+
|
302 |
+
|
303 |
+
# Function to check if all required joints are visible
|
304 |
+
def are_key_joints_visible(landmarks, visibility_threshold=0.5):
|
305 |
+
"""
|
306 |
+
Ensure that all required joints are visible based on their visibility scores.
|
307 |
+
"""
|
308 |
+
required_joints = [
|
309 |
+
mp_pose.PoseLandmark.LEFT_SHOULDER.value,
|
310 |
+
mp_pose.PoseLandmark.RIGHT_SHOULDER.value,
|
311 |
+
mp_pose.PoseLandmark.LEFT_WRIST.value,
|
312 |
+
mp_pose.PoseLandmark.RIGHT_WRIST.value,
|
313 |
+
]
|
314 |
+
for joint in required_joints:
|
315 |
+
if landmarks[joint].visibility < visibility_threshold:
|
316 |
+
return False
|
317 |
+
return True
|
318 |
+
|
319 |
+
|
320 |
+
# Real-time feedback for single rep
|
321 |
+
def analyze_single_rep(rep, rep_data):
|
322 |
+
"""Provide actionable feedback for a single rep."""
|
323 |
+
feedback = []
|
324 |
+
|
325 |
+
# Calculate averages from previous reps
|
326 |
+
avg_rom = np.mean([r["ROM"] for r in rep_data]) if rep_data else 0
|
327 |
+
avg_tempo = np.mean([r["Tempo"] for r in rep_data]) if rep_data else 0
|
328 |
+
|
329 |
+
# Dynamic tempo thresholds
|
330 |
+
lower_tempo_threshold = 2.0 # Minimum grace threshold for faster tempo
|
331 |
+
upper_tempo_threshold = 9.0 # Maximum grace threshold for slower tempo
|
332 |
+
|
333 |
+
# Adjust thresholds after a few reps
|
334 |
+
if len(rep_data) > 3:
|
335 |
+
lower_tempo_threshold = max(2.0, avg_tempo * 0.7)
|
336 |
+
upper_tempo_threshold = min(9.0, avg_tempo * 1.3)
|
337 |
+
|
338 |
+
# Feedback for ROM
|
339 |
+
if rep["ROM"] < 30: # Minimum ROM threshold
|
340 |
+
feedback.append("Lift arm higher")
|
341 |
+
elif rep_data and rep["ROM"] < avg_rom * 0.8:
|
342 |
+
feedback.append("Increase ROM")
|
343 |
+
|
344 |
+
# Feedback for Tempo
|
345 |
+
if rep["Tempo"] < lower_tempo_threshold: # Tempo too fast
|
346 |
+
feedback.append("Slow down")
|
347 |
+
elif rep["Tempo"] > upper_tempo_threshold: # Tempo too slow
|
348 |
+
feedback.append("Speed up")
|
349 |
+
|
350 |
+
return feedback
|
351 |
+
|
352 |
+
|
353 |
+
# Post-workout feedback function
|
354 |
+
def analyze_workout_with_isolation_forest(rep_data):
|
355 |
+
if not rep_data:
|
356 |
+
print("No reps completed.")
|
357 |
+
return
|
358 |
+
|
359 |
+
print("\n--- Post-Workout Summary ---")
|
360 |
+
|
361 |
+
# Filter valid reps for recalculating thresholds
|
362 |
+
valid_reps = [rep for rep in rep_data if rep["ROM"] > 20] # Ignore very low ROM reps
|
363 |
+
|
364 |
+
if not valid_reps:
|
365 |
+
print("No valid reps to analyze.")
|
366 |
+
return
|
367 |
+
|
368 |
+
features = np.array([[rep["ROM"], rep["Tempo"]] for rep in valid_reps])
|
369 |
+
|
370 |
+
avg_rom = np.mean(features[:, 0])
|
371 |
+
avg_tempo = np.mean(features[:, 1])
|
372 |
+
std_rom = np.std(features[:, 0])
|
373 |
+
std_tempo = np.std(features[:, 1])
|
374 |
+
|
375 |
+
# Adjusted bounds for anomalies
|
376 |
+
rom_lower_bound = max(20, avg_rom - std_rom * 2)
|
377 |
+
tempo_lower_bound = max(1.0, avg_tempo - std_tempo * 2)
|
378 |
+
tempo_upper_bound = min(10.0, avg_tempo + std_tempo * 2)
|
379 |
+
|
380 |
+
print(f"ROM Lower Bound: {rom_lower_bound}")
|
381 |
+
print(f"Tempo Bounds: {tempo_lower_bound}-{tempo_upper_bound}")
|
382 |
+
|
383 |
+
# Anomaly detection
|
384 |
+
for i, rep in enumerate(valid_reps, 1):
|
385 |
+
feedback = []
|
386 |
+
if rep["ROM"] < rom_lower_bound:
|
387 |
+
feedback.append("Low ROM")
|
388 |
+
if rep["Tempo"] < tempo_lower_bound:
|
389 |
+
feedback.append("Too Fast")
|
390 |
+
elif rep["Tempo"] > tempo_upper_bound:
|
391 |
+
feedback.append("Too Slow")
|
392 |
+
|
393 |
+
if feedback:
|
394 |
+
print(f"Rep {i}: Anomalous | Feedback: {', '.join(feedback[:1])}")
|
395 |
+
|
396 |
+
# Use Isolation Forest for secondary anomaly detection
|
397 |
+
model = IsolationForest(contamination=0.1, random_state=42) # Reduced contamination
|
398 |
+
predictions = model.fit_predict(features)
|
399 |
+
|
400 |
+
for i, prediction in enumerate(predictions, 1):
|
401 |
+
if prediction == -1: # Outlier
|
402 |
+
print(f"Rep {i}: Isolation Forest flagged this rep as anomalous.")
|
403 |
+
|
404 |
+
|
405 |
+
# Main workout tracking function
|
406 |
+
def main():
|
407 |
+
cap = cv2.VideoCapture(0)
|
408 |
+
counter = 0 # Rep counter
|
409 |
+
stage = None # Movement stage
|
410 |
+
feedback = [] # Real-time feedback for the video feed
|
411 |
+
rep_data = [] # Store metrics for each rep
|
412 |
+
angles_during_rep = [] # Track angles during a single rep
|
413 |
+
workout_start_time = None # Timer start
|
414 |
+
|
415 |
+
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
|
416 |
+
while cap.isOpened():
|
417 |
+
ret, frame = cap.read()
|
418 |
+
if not ret:
|
419 |
+
print("Failed to grab frame.")
|
420 |
+
break
|
421 |
+
|
422 |
+
# Initialize workout start time
|
423 |
+
if workout_start_time is None:
|
424 |
+
workout_start_time = time.time()
|
425 |
+
|
426 |
+
# Timer
|
427 |
+
elapsed_time = time.time() - workout_start_time
|
428 |
+
timer_text = f"Timer: {int(elapsed_time)}s"
|
429 |
+
|
430 |
+
# Convert the image to RGB
|
431 |
+
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
432 |
+
image.flags.writeable = False
|
433 |
+
results = pose.process(image)
|
434 |
+
|
435 |
+
# Convert back to BGR
|
436 |
+
image.flags.writeable = True
|
437 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
438 |
+
|
439 |
+
# Check if pose landmarks are detected
|
440 |
+
if results.pose_landmarks:
|
441 |
+
landmarks = results.pose_landmarks.landmark
|
442 |
+
|
443 |
+
# Check if key joints are visible
|
444 |
+
if not are_key_joints_visible(landmarks):
|
445 |
+
draw_text_with_background(
|
446 |
+
image, "Ensure all joints are visible", (50, 50),
|
447 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255)
|
448 |
+
)
|
449 |
+
cv2.imshow("Lateral Raise Tracker", image)
|
450 |
+
continue
|
451 |
+
|
452 |
+
# Extract key joints
|
453 |
+
left_shoulder = [
|
454 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
455 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y,
|
456 |
+
]
|
457 |
+
left_wrist = [
|
458 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
459 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y,
|
460 |
+
]
|
461 |
+
|
462 |
+
# Calculate angle for lateral raise
|
463 |
+
angle = calculate_angle_for_lateral_raise(left_shoulder, left_wrist)
|
464 |
+
|
465 |
+
# Track angles during a rep
|
466 |
+
if stage == "up" or stage == "down":
|
467 |
+
angles_during_rep.append(angle)
|
468 |
+
|
469 |
+
# Stage logic for counting reps
|
470 |
+
if angle < 20 and stage != "down":
|
471 |
+
stage = "down"
|
472 |
+
if counter == 10: # Stop on the down stage of the 10th rep
|
473 |
+
print("Workout complete! 10 reps reached.")
|
474 |
+
break
|
475 |
+
|
476 |
+
# Calculate ROM for the completed rep
|
477 |
+
if len(angles_during_rep) > 1:
|
478 |
+
rom = max(angles_during_rep) - min(angles_during_rep)
|
479 |
+
else:
|
480 |
+
rom = 0.0
|
481 |
+
|
482 |
+
tempo = elapsed_time
|
483 |
+
print(f"Rep {counter + 1}: ROM={rom:.2f}, Tempo={tempo:.2f}s")
|
484 |
+
|
485 |
+
# Record metrics for the rep
|
486 |
+
rep_data.append({
|
487 |
+
"ROM": rom,
|
488 |
+
"Tempo": tempo,
|
489 |
+
})
|
490 |
+
|
491 |
+
# Reset angles and timer for the next rep
|
492 |
+
angles_during_rep = []
|
493 |
+
workout_start_time = time.time() # Reset timer
|
494 |
+
|
495 |
+
if 70 <= angle <= 110 and stage == "down":
|
496 |
+
stage = "up"
|
497 |
+
counter += 1
|
498 |
+
|
499 |
+
# Analyze feedback
|
500 |
+
feedback = analyze_single_rep(rep_data[-1], rep_data)
|
501 |
+
|
502 |
+
# Determine wireframe color
|
503 |
+
wireframe_color = (0, 255, 0) if not feedback else (0, 0, 255)
|
504 |
+
|
505 |
+
# Display feedback
|
506 |
+
draw_text_with_background(image, f"Reps: {counter}", (50, 50),
|
507 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
508 |
+
draw_text_with_background(image, " | ".join(feedback), (50, 120),
|
509 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
510 |
+
draw_text_with_background(image, timer_text, (50, 190),
|
511 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
512 |
+
|
513 |
+
# Render detections with wireframe color
|
514 |
+
mp_drawing.draw_landmarks(
|
515 |
+
image,
|
516 |
+
results.pose_landmarks,
|
517 |
+
mp_pose.POSE_CONNECTIONS,
|
518 |
+
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
|
519 |
+
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
|
520 |
+
)
|
521 |
+
|
522 |
+
# Display the image
|
523 |
+
cv2.imshow("Lateral Raise Tracker", image)
|
524 |
+
|
525 |
+
if cv2.waitKey(10) & 0xFF == ord("q"):
|
526 |
+
break
|
527 |
+
|
528 |
+
cap.release()
|
529 |
+
cv2.destroyAllWindows()
|
530 |
+
|
531 |
+
# Post-workout analysis
|
532 |
+
analyze_workout_with_isolation_forest(rep_data)
|
533 |
+
|
534 |
+
|
535 |
+
if __name__ == "__main__":
|
536 |
+
main()
|
537 |
+
|
538 |
+
|
539 |
+
# From shoulder_press.py
|
540 |
+
import cv2
|
541 |
+
import mediapipe as mp
|
542 |
+
import numpy as np
|
543 |
+
import time
|
544 |
+
|
545 |
+
# Mediapipe utilities
|
546 |
+
mp_drawing = mp.solutions.drawing_utils
|
547 |
+
mp_pose = mp.solutions.pose
|
548 |
+
|
549 |
+
# Function to calculate angles
|
550 |
+
def calculate_angle(point_a, point_b, point_c):
|
551 |
+
vector_ab = np.array([point_a[0] - point_b[0], point_a[1] - point_b[1]])
|
552 |
+
vector_cb = np.array([point_c[0] - point_b[0], point_c[1] - point_b[1]])
|
553 |
+
dot_product = np.dot(vector_ab, vector_cb)
|
554 |
+
magnitude_ab = np.linalg.norm(vector_ab)
|
555 |
+
magnitude_cb = np.linalg.norm(vector_cb)
|
556 |
+
if magnitude_ab == 0 or magnitude_cb == 0:
|
557 |
+
return 0
|
558 |
+
cos_angle = dot_product / (magnitude_ab * magnitude_cb)
|
559 |
+
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
|
560 |
+
return np.degrees(angle)
|
561 |
+
|
562 |
+
|
563 |
+
# Function to check if all required joints are visible
|
564 |
+
def are_key_joints_visible(landmarks, visibility_threshold=0.5):
|
565 |
+
required_joints = [
|
566 |
+
mp_pose.PoseLandmark.LEFT_SHOULDER.value,
|
567 |
+
mp_pose.PoseLandmark.RIGHT_SHOULDER.value,
|
568 |
+
mp_pose.PoseLandmark.LEFT_ELBOW.value,
|
569 |
+
mp_pose.PoseLandmark.RIGHT_ELBOW.value,
|
570 |
+
mp_pose.PoseLandmark.LEFT_WRIST.value,
|
571 |
+
mp_pose.PoseLandmark.RIGHT_WRIST.value,
|
572 |
+
]
|
573 |
+
for joint in required_joints:
|
574 |
+
if landmarks[joint].visibility < visibility_threshold:
|
575 |
+
return False
|
576 |
+
return True
|
577 |
+
|
578 |
+
|
579 |
+
# Function to draw text with a background
|
580 |
+
def draw_text_with_background(image, text, position, font, font_scale, color, thickness, bg_color, padding=10):
|
581 |
+
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
|
582 |
+
text_x, text_y = position
|
583 |
+
box_coords = (
|
584 |
+
(text_x - padding, text_y - padding),
|
585 |
+
(text_x + text_size[0] + padding, text_y + text_size[1] + padding),
|
586 |
+
)
|
587 |
+
cv2.rectangle(image, box_coords[0], box_coords[1], bg_color, cv2.FILLED)
|
588 |
+
cv2.putText(image, text, (text_x, text_y + text_size[1]), font, font_scale, color, thickness)
|
589 |
+
|
590 |
+
|
591 |
+
# Main workout tracking function
|
592 |
+
def main():
|
593 |
+
cap = cv2.VideoCapture(0)
|
594 |
+
counter = 0
|
595 |
+
stage = None
|
596 |
+
feedback = ""
|
597 |
+
workout_start_time = None
|
598 |
+
rep_start_time = None
|
599 |
+
|
600 |
+
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
|
601 |
+
while cap.isOpened():
|
602 |
+
ret, frame = cap.read()
|
603 |
+
if not ret:
|
604 |
+
print("Failed to grab frame.")
|
605 |
+
break
|
606 |
+
|
607 |
+
# Initialize workout start time
|
608 |
+
if workout_start_time is None:
|
609 |
+
workout_start_time = time.time()
|
610 |
+
|
611 |
+
# Timer
|
612 |
+
elapsed_time = time.time() - workout_start_time
|
613 |
+
timer_text = f"Timer: {int(elapsed_time)}s"
|
614 |
+
|
615 |
+
# Convert the image to RGB
|
616 |
+
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
617 |
+
image.flags.writeable = False
|
618 |
+
results = pose.process(image)
|
619 |
+
|
620 |
+
# Convert back to BGR
|
621 |
+
image.flags.writeable = True
|
622 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
623 |
+
|
624 |
+
# Check if pose landmarks are detected
|
625 |
+
if results.pose_landmarks:
|
626 |
+
landmarks = results.pose_landmarks.landmark
|
627 |
+
|
628 |
+
# Check if key joints are visible
|
629 |
+
if not are_key_joints_visible(landmarks):
|
630 |
+
feedback = "Ensure all joints are visible"
|
631 |
+
draw_text_with_background(
|
632 |
+
image, feedback, (50, 50),
|
633 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255)
|
634 |
+
)
|
635 |
+
cv2.imshow("Shoulder Press Tracker", image)
|
636 |
+
continue
|
637 |
+
|
638 |
+
# Extract key joints for both arms
|
639 |
+
left_shoulder = [
|
640 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
|
641 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y,
|
642 |
+
]
|
643 |
+
left_elbow = [
|
644 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
|
645 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y,
|
646 |
+
]
|
647 |
+
left_wrist = [
|
648 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
|
649 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y,
|
650 |
+
]
|
651 |
+
|
652 |
+
right_shoulder = [
|
653 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x,
|
654 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y,
|
655 |
+
]
|
656 |
+
right_elbow = [
|
657 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].x,
|
658 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].y,
|
659 |
+
]
|
660 |
+
right_wrist = [
|
661 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x,
|
662 |
+
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y,
|
663 |
+
]
|
664 |
+
|
665 |
+
# Calculate angles
|
666 |
+
left_elbow_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)
|
667 |
+
right_elbow_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)
|
668 |
+
|
669 |
+
# Check starting and ending positions
|
670 |
+
if 80 <= left_elbow_angle <= 100 and 80 <= right_elbow_angle <= 100 and stage != "down":
|
671 |
+
stage = "down"
|
672 |
+
if counter == 10:
|
673 |
+
feedback = "Workout complete! 10 reps done."
|
674 |
+
draw_text_with_background(image, feedback, (50, 120),
|
675 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255))
|
676 |
+
cv2.imshow("Shoulder Press Tracker", image)
|
677 |
+
break
|
678 |
+
if rep_start_time is not None:
|
679 |
+
tempo = time.time() - rep_start_time
|
680 |
+
feedback = f"Rep {counter} completed! Tempo: {tempo:.2f}s"
|
681 |
+
rep_start_time = None
|
682 |
+
elif left_elbow_angle > 160 and right_elbow_angle > 160 and stage == "down":
|
683 |
+
stage = "up"
|
684 |
+
counter += 1
|
685 |
+
rep_start_time = time.time()
|
686 |
+
|
687 |
+
# Wireframe color
|
688 |
+
wireframe_color = (0, 255, 0) if "completed" in feedback or "Good" in feedback else (0, 0, 255)
|
689 |
+
|
690 |
+
# Display feedback
|
691 |
+
draw_text_with_background(image, f"Reps: {counter}", (50, 50),
|
692 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
693 |
+
draw_text_with_background(image, feedback, (50, 120),
|
694 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
695 |
+
draw_text_with_background(image, timer_text, (50, 190),
|
696 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
|
697 |
+
|
698 |
+
# Render detections with wireframe color
|
699 |
+
mp_drawing.draw_landmarks(
|
700 |
+
image,
|
701 |
+
results.pose_landmarks,
|
702 |
+
mp_pose.POSE_CONNECTIONS,
|
703 |
+
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
|
704 |
+
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
|
705 |
+
)
|
706 |
+
|
707 |
+
# Display the image
|
708 |
+
cv2.imshow("Shoulder Press Tracker", image)
|
709 |
+
|
710 |
+
if cv2.waitKey(10) & 0xFF == ord("q"):
|
711 |
+
break
|
712 |
+
|
713 |
+
cap.release()
|
714 |
+
cv2.destroyAllWindows()
|
715 |
+
|
716 |
+
|
717 |
+
if __name__ == "__main__":
|
718 |
+
main()
|
719 |
+
|
720 |
+
|