Spaces:
No application file
No application file
BinZhang
commited on
Commit
·
165237e
1
Parent(s):
3e029de
dftmsg
Browse files- a.py +0 -48
- bank_app.py +0 -31
- bank_requirements.txt +0 -1
- ok_bank_app.py +0 -85
- ok_bank_requirements.txt +0 -112
a.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
os.environ['NLTK_DATA'] = '/root/nltk_data'
|
3 |
-
|
4 |
-
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
5 |
-
from llama_index.core.settings import Settings
|
6 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
-
from llama_index.legacy.callbacks import CallbackManager
|
8 |
-
from llama_index.llms.openai_like import OpenAILike
|
9 |
-
|
10 |
-
|
11 |
-
# Create an instance of CallbackManager
|
12 |
-
callback_manager = CallbackManager()
|
13 |
-
|
14 |
-
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
15 |
-
model = "internlm2.5-latest"
|
16 |
-
api_key = "请填写 API Key"
|
17 |
-
|
18 |
-
# api_base_url = "https://api.siliconflow.cn/v1"
|
19 |
-
# model = "internlm/internlm2_5-7b-chat"
|
20 |
-
# api_key = "请填写 API Key"
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
|
25 |
-
|
26 |
-
|
27 |
-
#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
|
28 |
-
embed_model = HuggingFaceEmbedding(
|
29 |
-
#指定了一个预训练的sentence-transformer模型的路径
|
30 |
-
model_name="/root/model/sentence-transformer"
|
31 |
-
)
|
32 |
-
#将创建的嵌入模型赋值给全局设置的embed_model属性,
|
33 |
-
#这样在后续的索引构建过程中就会使用这个模型。
|
34 |
-
Settings.embed_model = embed_model
|
35 |
-
|
36 |
-
#初始化llm
|
37 |
-
Settings.llm = llm
|
38 |
-
|
39 |
-
#从指定目录读取所有文档,并加载数据到内存中
|
40 |
-
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
|
41 |
-
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
|
42 |
-
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
|
43 |
-
index = VectorStoreIndex.from_documents(documents)
|
44 |
-
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
|
45 |
-
query_engine = index.as_query_engine()
|
46 |
-
response = query_engine.query("xtuner是什么?")
|
47 |
-
|
48 |
-
print(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bank_app.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from openai import OpenAI
|
3 |
-
|
4 |
-
# 设置 API 参数
|
5 |
-
base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
6 |
-
api_key = "eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiIxMTIwNDk3OSIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczMzQxMjU1NCwiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTUxMzcxMTY1MzEiLCJ1dWlkIjoiYmVlYTk0NTQtNWE5OS00OGNkLTgxNzctZDdjZWYzNmQwNTAxIiwiZW1haWwiOiIiLCJleHAiOjE3NDg5NjQ1NTR9.0-DNSkviINNJhGmx49-kUfTSRvyXNrT4LXU1sB01FprErwGCVinJStN5aNsaHjF2K95Pl7B15SQ_fa2l8cIT3Q"
|
7 |
-
model = "internlm2.5-latest"
|
8 |
-
|
9 |
-
# 创建 OpenAI 客户端
|
10 |
-
client = OpenAI(
|
11 |
-
api_key=api_key,
|
12 |
-
base_url=base_url,
|
13 |
-
)
|
14 |
-
|
15 |
-
# 设置页面标题
|
16 |
-
st.title("Chat with InternLM")
|
17 |
-
|
18 |
-
# 创建一个文本输入框供用户输入问题
|
19 |
-
user_input = st.text_input("请输入你的问题:")
|
20 |
-
|
21 |
-
# 按钮用于提交问题
|
22 |
-
if st.button("发送"):
|
23 |
-
# 调用 OpenAI API 获取回复
|
24 |
-
chat_rsp = client.chat.completions.create(
|
25 |
-
model=model,
|
26 |
-
messages=[{"role": "user", "content": user_input}],
|
27 |
-
)
|
28 |
-
|
29 |
-
# 显示回复
|
30 |
-
for choice in chat_rsp.choices:
|
31 |
-
st.write(f"回复: {choice.message.content}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bank_requirements.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
openai
|
|
|
|
ok_bank_app.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
3 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
-
from llama_index.legacy.callbacks import CallbackManager
|
5 |
-
from llama_index.llms.openai_like import OpenAILike
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
import os
|
8 |
-
load_dotenv()
|
9 |
-
# Create an instance of CallbackManager
|
10 |
-
callback_manager = CallbackManager()
|
11 |
-
|
12 |
-
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
13 |
-
model = "internlm2.5-latest"
|
14 |
-
api_key = os.getenv("MY_API_KEY")
|
15 |
-
|
16 |
-
# api_base_url = "https://api.siliconflow.cn/v1"
|
17 |
-
# model = "internlm/internlm2_5-7b-chat"
|
18 |
-
# api_key = "请填写 API Key"
|
19 |
-
|
20 |
-
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
|
25 |
-
st.title("llama_index_demo")
|
26 |
-
|
27 |
-
# 初始化模型
|
28 |
-
@st.cache_resource
|
29 |
-
def init_models():
|
30 |
-
embed_model = HuggingFaceEmbedding(
|
31 |
-
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
32 |
-
)
|
33 |
-
Settings.embed_model = embed_model
|
34 |
-
|
35 |
-
#用初始化llm
|
36 |
-
Settings.llm = llm
|
37 |
-
|
38 |
-
documents = SimpleDirectoryReader("./data").load_data()
|
39 |
-
index = VectorStoreIndex.from_documents(documents)
|
40 |
-
query_engine = index.as_query_engine()
|
41 |
-
|
42 |
-
return query_engine
|
43 |
-
|
44 |
-
# 检查是否需要初始化模型
|
45 |
-
if 'query_engine' not in st.session_state:
|
46 |
-
st.session_state['query_engine'] = init_models()
|
47 |
-
|
48 |
-
def greet2(question):
|
49 |
-
response = st.session_state['query_engine'].query(question)
|
50 |
-
return response
|
51 |
-
|
52 |
-
|
53 |
-
# Store LLM generated responses
|
54 |
-
if "messages" not in st.session_state.keys():
|
55 |
-
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
56 |
-
|
57 |
-
# Display or clear chat messages
|
58 |
-
for message in st.session_state.messages:
|
59 |
-
with st.chat_message(message["role"]):
|
60 |
-
st.write(message["content"])
|
61 |
-
|
62 |
-
def clear_chat_history():
|
63 |
-
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
64 |
-
|
65 |
-
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
|
66 |
-
|
67 |
-
# Function for generating LLaMA2 response
|
68 |
-
def generate_llama_index_response(prompt_input):
|
69 |
-
return greet2(prompt_input)
|
70 |
-
|
71 |
-
# User-provided prompt
|
72 |
-
if prompt := st.chat_input():
|
73 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
74 |
-
with st.chat_message("user"):
|
75 |
-
st.write(prompt)
|
76 |
-
|
77 |
-
# Gegenerate_llama_index_response last message is not from assistant
|
78 |
-
if st.session_state.messages[-1]["role"] != "assistant":
|
79 |
-
with st.chat_message("assistant"):
|
80 |
-
with st.spinner("Thinking..."):
|
81 |
-
response = generate_llama_index_response(prompt)
|
82 |
-
placeholder = st.empty()
|
83 |
-
placeholder.markdown(response)
|
84 |
-
message = {"role": "assistant", "content": response}
|
85 |
-
st.session_state.messages.append(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ok_bank_requirements.txt
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
aiohappyeyeballs==2.4.3
|
2 |
-
aiohttp==3.11.8
|
3 |
-
aiosignal==1.3.1
|
4 |
-
annotated-types==0.7.0
|
5 |
-
anyio==4.6.2.post1
|
6 |
-
async-timeout==5.0.1
|
7 |
-
attrs==24.2.0
|
8 |
-
beautifulsoup4==4.12.3
|
9 |
-
certifi==2024.8.30
|
10 |
-
charset-normalizer==3.4.0
|
11 |
-
click==8.1.7
|
12 |
-
dataclasses-json==0.6.7
|
13 |
-
Deprecated==1.2.15
|
14 |
-
dirtyjson==1.0.8
|
15 |
-
distro==1.9.0
|
16 |
-
einops==0.7.0
|
17 |
-
exceptiongroup==1.2.2
|
18 |
-
filelock==3.16.1
|
19 |
-
filetype==1.2.0
|
20 |
-
frozenlist==1.5.0
|
21 |
-
fsspec==2024.10.0
|
22 |
-
greenlet==3.1.1
|
23 |
-
h11==0.14.0
|
24 |
-
httpcore==1.0.7
|
25 |
-
httpx==0.28.0
|
26 |
-
huggingface-hub==0.26.3
|
27 |
-
idna==3.10
|
28 |
-
InstructorEmbedding==1.0.1
|
29 |
-
Jinja2==3.1.4
|
30 |
-
jiter==0.8.0
|
31 |
-
joblib==1.4.2
|
32 |
-
llama-cloud==0.1.5
|
33 |
-
llama-index==0.11.20
|
34 |
-
llama-index-agent-openai==0.3.4
|
35 |
-
llama-index-cli==0.3.1
|
36 |
-
llama-index-core==0.11.23
|
37 |
-
llama-index-embeddings-huggingface==0.3.1
|
38 |
-
llama-index-embeddings-instructor==0.2.1
|
39 |
-
llama-index-embeddings-openai==0.2.5
|
40 |
-
llama-index-indices-managed-llama-cloud==0.6.0
|
41 |
-
llama-index-legacy==0.9.48.post4
|
42 |
-
llama-index-llms-openai==0.2.16
|
43 |
-
llama-index-llms-openai-like==0.2.0
|
44 |
-
llama-index-llms-replicate==0.3.0
|
45 |
-
llama-index-multi-modal-llms-openai==0.2.3
|
46 |
-
llama-index-program-openai==0.2.0
|
47 |
-
llama-index-question-gen-openai==0.2.0
|
48 |
-
llama-index-readers-file==0.2.2
|
49 |
-
llama-index-readers-llama-parse==0.3.0
|
50 |
-
llama-parse==0.5.15
|
51 |
-
MarkupSafe==3.0.2
|
52 |
-
marshmallow==3.23.1
|
53 |
-
mpmath==1.3.0
|
54 |
-
multidict==6.1.0
|
55 |
-
mypy-extensions==1.0.0
|
56 |
-
nest-asyncio==1.6.0
|
57 |
-
networkx==3.4.2
|
58 |
-
nltk==3.9.1
|
59 |
-
numpy==1.26.4
|
60 |
-
# nvidia-cublas-cu12==12.1.3.1
|
61 |
-
# nvidia-cuda-cupti-cu12==12.1.105
|
62 |
-
# nvidia-cuda-nvrtc-cu12==12.1.105
|
63 |
-
# nvidia-cuda-runtime-cu12==12.1.105
|
64 |
-
# nvidia-cudnn-cu12==9.1.0.70
|
65 |
-
# nvidia-cufft-cu12==11.0.2.54
|
66 |
-
# nvidia-curand-cu12==10.3.2.106
|
67 |
-
# nvidia-cusolver-cu12==11.4.5.107
|
68 |
-
# nvidia-cusparse-cu12==12.1.0.106
|
69 |
-
# nvidia-nccl-cu12==2.21.5
|
70 |
-
# nvidia-nvjitlink-cu12==12.4.127
|
71 |
-
# nvidia-nvtx-cu12==12.1.105
|
72 |
-
openai==1.55.3
|
73 |
-
packaging==24.2
|
74 |
-
pandas==2.2.3
|
75 |
-
pillow==11.0.0
|
76 |
-
propcache==0.2.0
|
77 |
-
protobuf==5.26.1
|
78 |
-
pydantic==2.10.2
|
79 |
-
pydantic_core==2.27.1
|
80 |
-
pypdf==4.3.1
|
81 |
-
python-dateutil==2.9.0.post0
|
82 |
-
python-dotenv==1.0.1
|
83 |
-
pytz==2024.2
|
84 |
-
PyYAML==6.0.2
|
85 |
-
regex==2024.11.6
|
86 |
-
requests==2.32.3
|
87 |
-
safetensors==0.4.5
|
88 |
-
scikit-learn==1.5.2
|
89 |
-
scipy==1.14.1
|
90 |
-
sentence-transformers==2.7.0
|
91 |
-
six==1.16.0
|
92 |
-
sniffio==1.3.1
|
93 |
-
soupsieve==2.6
|
94 |
-
SQLAlchemy==2.0.36
|
95 |
-
striprtf==0.0.26
|
96 |
-
sympy==1.13.1
|
97 |
-
tenacity==8.5.0
|
98 |
-
threadpoolctl==3.5.0
|
99 |
-
tiktoken==0.8.0
|
100 |
-
tokenizers==0.20.3
|
101 |
-
torch==2.5.0
|
102 |
-
torchaudio==2.5.0
|
103 |
-
torchvision==0.20.0
|
104 |
-
tqdm==4.67.1
|
105 |
-
transformers==4.46.3
|
106 |
-
triton==3.1.0
|
107 |
-
typing-inspect==0.9.0
|
108 |
-
typing_extensions==4.12.2
|
109 |
-
tzdata==2024.2
|
110 |
-
urllib3==2.2.3
|
111 |
-
wrapt==1.17.0
|
112 |
-
yarl==1.18.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|