import openai import tiktoken import json import os openai.api_key = os.getenv('API_KEY') def ask(question, history): history = history + [question] try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=forget_long_term([ {"role":"user" if i%2==0 else "assistant", "content":content} for i,content in enumerate(history) ]) )["choices"][0]["message"]["content"] while response.startswith("\n"): response = response[1:] except Exception as e: print(e) response = 'Timeout! Please wait a few minutes and retry' history = history + [response] with open("dialogue.txt", "a", encoding='utf-8') as f: f.write(json.dumps(history, ensure_ascii=False)+"\n") return history def forget_long_term(messages, max_num_tokens=4000): def num_tokens_from_messages(messages, model="gpt-3.5-turbo"): """Returns the number of tokens used by a list of messages.""" try: encoding = tiktoken.encoding_for_model(model) except KeyError: encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-3.5-turbo": # note: future models may deviate from this num_tokens = 0 for message in messages: num_tokens += 4 # every message follows {role/name}\n{content}\n for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": # if there's a name, the role is omitted num_tokens += -1 # role is always required and always 1 token num_tokens += 2 # every reply is primed with assistant return num_tokens else: raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""") while num_tokens_from_messages(messages)>max_num_tokens: messages = messages[1:] return messages import gradio as gr def predict(question, history=[]): history = ask(question, history) response = [(history[i].replace("\n","
"),history[i+1].replace("\n","
")) for i in range(0,len(history)-1,2)] return "", history, response with gr.Blocks() as demo: examples = [ ['200字介绍一下凯旋门:'], ['网上购物有什么小窍门?'], ['补全下述对三亚的介绍:\n三亚位于海南岛的最南端,是'], ['将这句文言文翻译成英语:"逝者如斯夫,不舍昼夜。"'], ['Question: What\'s the best winter resort city? User: A 10-year professional traveler. Answer: '], ['How to help my child to make friends with his classmates? answer this question step by step:'], ['polish the following statement for a paper: In this section, we perform case study to give a more intuitive demonstration of our proposed strategies and corresponding explanation.'], ] gr.Markdown( """ 朋友你好, 这是我利用[gradio](https://gradio.app/creating-a-chatbot/)编写的一个小网页,用于以网页的形式给大家分享ChatGPT请求服务,希望你玩的开心 p.s. 响应时间和问题复杂程度相关,一般能在10~20秒内出结果用了新的api已经提速到大约5秒内了 """) chatbot = gr.Chatbot() state = gr.State([]) with gr.Row(): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) txt.submit(predict, [txt, state], [txt, state, chatbot]) with gr.Row(): gen = gr.Button("Submit") clr = gr.Button("Clear") gen.click(fn=predict, inputs=[txt, state], outputs=[txt, state, chatbot]) def clear(value): return [], [] clr.click(clear, inputs=clr, outputs=[chatbot, state]) gr_examples = gr.Examples(examples=examples, inputs=txt) demo.launch()