Spaces:
Sleeping
Sleeping
File size: 6,562 Bytes
1857da6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import openai
import tiktoken
import datetime
import json
import os
openai.api_key = os.getenv('API_KEY')
openai.request_times = 0
def ask(question, history, behavior):
openai.request_times += 1
print(f"request times {openai.request_times}: {datetime.datetime.now()}: {question}")
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=forget_long_term(
[
{"role":"system", "content":content}
for content in behavior
] + [
{"role":"user" if i%2==0 else "assistant", "content":content}
for i,content in enumerate(history + [question])
]
)
)["choices"][0]["message"]["content"]
while response.startswith("\n"):
response = response[1:]
except Exception as e:
print(e)
response = 'Timeout! Please wait a few minutes and retry'
history = history + [question, response]
return history
def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo": # note: future models may deviate from this
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
else:
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
def forget_long_term(messages, max_num_tokens=4000):
while num_tokens_from_messages(messages)>max_num_tokens:
if messages[0]["role"]=="system" and not len(messages[0]["content"]>=max_num_tokens):
messages = messages[:1] + messages[2:]
else:
messages = messages[1:]
return messages
import gradio as gr
def to_md(content):
is_inside_code_block = False
output_spans = []
for i in range(len(content)):
if content[i]=="\n" and not is_inside_code_block:
if len(output_spans)>0 and output_spans[-1]=="\n```\n":
pass
else:
output_spans.append("<br>")
elif content[i]=="`":
output_spans.append(content[i])
if len(output_spans)>=3 and all([output_spans[j]=="`" for j in [-3,-2,-1]]):
is_inside_code_block = not is_inside_code_block
output_spans = output_spans[:-3]
if not output_spans[-1]=="\n":
output_spans.append("\n")
output_spans.append("\n```\n")
else:
output_spans.append(content[i])
return "".join(output_spans)
def predict(question, history=[], behavior=[]):
history = ask(question, history, behavior)
response = [(to_md(history[i]),to_md(history[i+1])) for i in range(0,len(history)-1,2)]
return "", history, response
with gr.Blocks() as demo:
examples_txt = [
['200字介绍一下凯旋门:'],
['网上购物有什么小窍门?'],
['补全下述对三亚的介绍:\n三亚位于海南岛的最南端,是'],
['将这句文言文翻译成英语:"逝者如斯夫,不舍昼夜。"'],
['Question: What\'s the best winter resort city? User: A 10-year professional traveler. Answer: '],
['How to help my child to make friends with his classmates? answer this question step by step:'],
['polish the following statement for a paper: In this section, we perform case study to give a more intuitive demonstration of our proposed strategies and corresponding explanation.'],
]
examples_bhv = [
"你现在是一个带有批判思维的导游,会对景点的优缺点进行中肯的分析。",
"你现在是一名佛教信仰者,但同时又对世界上其它的宗教和文化保持着包容、尊重和交流的态度。",
f"You are a helpful assistant. You will answer all the questions step-by-step.",
f"You are a helpful assistant. Today is {datetime.date.today()}.",
]
gr.Markdown(
"""
朋友你好,
这是我利用[gradio](https://gradio.app/creating-a-chatbot/)编写的一个小网页,用于以网页的形式给大家分享ChatGPT请求服务,希望你玩的开心。关于使用技巧或学术研讨,欢迎在[Community](https://huggingface.co/spaces/zhangjf/chatbot/discussions)中和我交流。
p.s. 响应时间和聊天内容长度正相关,一般能在5秒~30秒内响应。
""")
behavior = gr.State([])
with gr.Column(variant="panel"):
with gr.Row().style(equal_height=True):
with gr.Column(scale=0.85):
bhv = gr.Textbox(show_label=False, placeholder="输入你想让ChatGPT扮演的人设").style(container=False)
with gr.Column(scale=0.15, min_width=0):
button_set = gr.Button("Set")
bhv.submit(fn=lambda x:(x,[x]), inputs=[bhv], outputs=[bhv, behavior])
button_set.click(fn=lambda x:(x,[x]), inputs=[bhv], outputs=[bhv, behavior])
state = gr.State([])
with gr.Column(variant="panel"):
chatbot = gr.Chatbot()
txt = gr.Textbox(show_label=False, placeholder="输入你想让ChatGPT回答的问题").style(container=False)
with gr.Row():
button_gen = gr.Button("Submit")
button_clr = gr.Button("Clear")
gr.Examples(examples=examples_bhv, inputs=bhv, label="Examples for setting behavior")
gr.Examples(examples=examples_txt, inputs=txt, label="Examples for asking question")
txt.submit(predict, [txt, state, behavior], [txt, state, chatbot])
button_gen.click(fn=predict, inputs=[txt, state, behavior], outputs=[txt, state, chatbot])
button_clr.click(fn=lambda :([],[]), inputs=None, outputs=[chatbot, state])
demo.launch() |