Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- xtuner/__init__.py +25 -0
- xtuner/__pycache__/__init__.cpython-310.pyc +0 -0
- xtuner/__pycache__/entry_point.cpython-310.pyc +0 -0
- xtuner/__pycache__/registry.cpython-310.pyc +0 -0
- xtuner/__pycache__/version.cpython-310.pyc +0 -0
- xtuner/apis/__init__.py +4 -0
- xtuner/apis/datasets/__init__.py +37 -0
- xtuner/apis/datasets/alpaca.py +92 -0
- xtuner/apis/datasets/arxiv.py +38 -0
- xtuner/apis/datasets/code_alpaca.py +34 -0
- xtuner/apis/datasets/colorist.py +34 -0
- xtuner/apis/datasets/lawyer.py +97 -0
- xtuner/apis/datasets/medical.py +34 -0
- xtuner/apis/datasets/moss_003_sft.py +72 -0
- xtuner/apis/datasets/oasst1.py +34 -0
- xtuner/apis/datasets/open_orca.py +34 -0
- xtuner/apis/datasets/sql.py +34 -0
- xtuner/apis/datasets/tiny_codes.py +34 -0
- xtuner/apis/datasets/wizardlm.py +34 -0
- xtuner/apis/model.py +89 -0
- xtuner/apis/training_args.py +61 -0
- xtuner/configs/__init__.py +19 -0
- xtuner/configs/__pycache__/__init__.cpython-310.pyc +0 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_alpaca_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_alpaca_enzh_e3.py +229 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_alpaca_enzh_oasst1_e3.py +244 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_alpaca_zh_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_arxiv_gentitle_e3.py +247 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_code_alpaca_e3.py +216 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_colorist_e5.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_lawyer_e3.py +236 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_oasst1_512_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_oasst1_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_open_platypus_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_sql_e3.py +216 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_alpaca_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_alpaca_enzh_e3.py +229 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_alpaca_enzh_oasst1_e3.py +244 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_alpaca_zh_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_code_alpaca_e3.py +216 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_lawyer_e3.py +236 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_oasst1_512_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_oasst1_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_open_platypus_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_enzh_e3.py +229 -0
- xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_enzh_oasst1_e3.py +244 -0
- xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_zh_e3.py +212 -0
- xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_arxiv_gentitle_e3.py +247 -0
- xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_code_alpaca_e3.py +216 -0
xtuner/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import os
|
3 |
+
|
4 |
+
from mmengine.utils import digit_version
|
5 |
+
|
6 |
+
from .entry_point import cli
|
7 |
+
from .version import __version__, version_info
|
8 |
+
|
9 |
+
HF_CEPH_HUB = os.getenv('HF_CEPH_HUB', '')
|
10 |
+
HF_USE_CEPH = os.getenv('HF_USE_CEPH', 0) or HF_CEPH_HUB != ''
|
11 |
+
DS_CEPH_DIR = os.getenv('DS_CEPH_DIR', None)
|
12 |
+
if HF_USE_CEPH:
|
13 |
+
from .utils.fileio import (patch_hf_auto_from_pretrained,
|
14 |
+
patch_hf_save_pretrained)
|
15 |
+
patch_hf_auto_from_pretrained(HF_CEPH_HUB)
|
16 |
+
patch_hf_save_pretrained()
|
17 |
+
|
18 |
+
if DS_CEPH_DIR:
|
19 |
+
from .utils.fileio import patch_deepspeed_engine
|
20 |
+
patch_deepspeed_engine()
|
21 |
+
|
22 |
+
__all__ = [
|
23 |
+
'__version__', 'version_info', 'digit_version', 'cli', 'HF_USE_CEPH',
|
24 |
+
'DS_CEPH_DIR'
|
25 |
+
]
|
xtuner/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (673 Bytes). View file
|
|
xtuner/__pycache__/entry_point.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
xtuner/__pycache__/registry.cpython-310.pyc
ADDED
Binary file (283 Bytes). View file
|
|
xtuner/__pycache__/version.cpython-310.pyc
ADDED
Binary file (803 Bytes). View file
|
|
xtuner/apis/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from .datasets import * # noqa: F401, F403
|
3 |
+
from .model import * # noqa: F401, F403
|
4 |
+
from .training_args import * # noqa: F401, F403
|
xtuner/apis/datasets/__init__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from .alpaca import (alpaca_data_collator, alpaca_dataset,
|
3 |
+
alpaca_enzh_data_collator, alpaca_enzh_dataset,
|
4 |
+
alpaca_zh_data_collator, alpaca_zh_dataset)
|
5 |
+
from .arxiv import arxiv_data_collator, arxiv_dataset
|
6 |
+
from .code_alpaca import code_alpaca_data_collator, code_alpaca_dataset
|
7 |
+
from .colorist import colorist_data_collator, colorist_dataset
|
8 |
+
from .lawyer import (lawyer_crime_data_collator, lawyer_crime_dataset,
|
9 |
+
lawyer_data_collator, lawyer_dataset,
|
10 |
+
lawyer_reference_data_collator, lawyer_reference_dataset)
|
11 |
+
from .medical import medical_data_collator, medical_dataset
|
12 |
+
from .moss_003_sft import (moss_003_sft_data_collator, moss_003_sft_dataset,
|
13 |
+
moss_003_sft_no_plugins_data_collator,
|
14 |
+
moss_003_sft_no_plugins_dataset,
|
15 |
+
moss_003_sft_plugins_data_collator,
|
16 |
+
moss_003_sft_plugins_dataset)
|
17 |
+
from .oasst1 import oasst1_data_collator, oasst1_dataset
|
18 |
+
from .open_orca import openorca_data_collator, openorca_dataset
|
19 |
+
from .sql import sql_data_collator, sql_dataset
|
20 |
+
from .tiny_codes import tiny_codes_data_collator, tiny_codes_dataset
|
21 |
+
from .wizardlm import wizardlm_data_collator, wizardlm_dataset
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
'alpaca_data_collator', 'alpaca_dataset', 'alpaca_enzh_data_collator',
|
25 |
+
'alpaca_enzh_dataset', 'alpaca_zh_data_collator', 'alpaca_zh_dataset',
|
26 |
+
'arxiv_data_collator', 'arxiv_dataset', 'medical_data_collator',
|
27 |
+
'medical_dataset', 'moss_003_sft_data_collator', 'moss_003_sft_dataset',
|
28 |
+
'moss_003_sft_no_plugins_data_collator', 'moss_003_sft_no_plugins_dataset',
|
29 |
+
'moss_003_sft_plugins_data_collator', 'moss_003_sft_plugins_dataset',
|
30 |
+
'oasst1_data_collator', 'oasst1_dataset', 'openorca_data_collator',
|
31 |
+
'openorca_dataset', 'lawyer_crime_dataset', 'lawyer_crime_data_collator',
|
32 |
+
'lawyer_reference_dataset', 'lawyer_reference_data_collator',
|
33 |
+
'lawyer_dataset', 'lawyer_data_collator', 'colorist_dataset',
|
34 |
+
'colorist_data_collator', 'sql_dataset', 'sql_data_collator',
|
35 |
+
'code_alpaca_dataset', 'code_alpaca_data_collator', 'tiny_codes_dataset',
|
36 |
+
'tiny_codes_data_collator', 'wizardlm_data_collator', 'wizardlm_dataset'
|
37 |
+
]
|
xtuner/apis/datasets/alpaca.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
from torch.utils.data import ConcatDataset
|
6 |
+
|
7 |
+
from xtuner.dataset import process_hf_dataset
|
8 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
9 |
+
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
|
10 |
+
template_map_fn_factory)
|
11 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
12 |
+
|
13 |
+
|
14 |
+
def alpaca_enzh_dataset(tokenizer,
|
15 |
+
path_en='tatsu-lab/alpaca',
|
16 |
+
path_zh='silk-road/alpaca-data-gpt4-chinese',
|
17 |
+
max_length=2048,
|
18 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
19 |
+
remove_unused_columns=True,
|
20 |
+
pack_to_max_length=True):
|
21 |
+
alpaca = alpaca_dataset(
|
22 |
+
tokenizer,
|
23 |
+
path=path_en,
|
24 |
+
max_length=max_length,
|
25 |
+
prompt_template=prompt_template,
|
26 |
+
shuffle_before_pack=True,
|
27 |
+
remove_unused_columns=remove_unused_columns,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
alpaca_zh = alpaca_zh_dataset(
|
30 |
+
tokenizer,
|
31 |
+
path=path_zh,
|
32 |
+
max_length=max_length,
|
33 |
+
prompt_template=prompt_template,
|
34 |
+
shuffle_before_pack=True,
|
35 |
+
remove_unused_columns=remove_unused_columns,
|
36 |
+
pack_to_max_length=pack_to_max_length)
|
37 |
+
dataset = ConcatDataset([alpaca, alpaca_zh])
|
38 |
+
return dataset
|
39 |
+
|
40 |
+
|
41 |
+
def alpaca_enzh_data_collator(return_hf_format=False):
|
42 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
43 |
+
|
44 |
+
|
45 |
+
def alpaca_zh_dataset(tokenizer,
|
46 |
+
path='silk-road/alpaca-data-gpt4-chinese',
|
47 |
+
max_length=2048,
|
48 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
49 |
+
remove_unused_columns=True,
|
50 |
+
pack_to_max_length=True):
|
51 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
52 |
+
dataset_org = load_dataset(path)
|
53 |
+
dataset = process_hf_dataset(
|
54 |
+
dataset=dataset_org,
|
55 |
+
tokenizer=tokenizer,
|
56 |
+
max_length=max_length,
|
57 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
58 |
+
template_map_fn=template_map_fn,
|
59 |
+
remove_unused_columns=remove_unused_columns,
|
60 |
+
shuffle_before_pack=True,
|
61 |
+
pack_to_max_length=pack_to_max_length)
|
62 |
+
|
63 |
+
return dataset
|
64 |
+
|
65 |
+
|
66 |
+
def alpaca_zh_data_collator(return_hf_format=False):
|
67 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
68 |
+
|
69 |
+
|
70 |
+
def alpaca_dataset(tokenizer,
|
71 |
+
path='tatsu-lab/alpaca',
|
72 |
+
max_length=2048,
|
73 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
74 |
+
remove_unused_columns=True,
|
75 |
+
pack_to_max_length=True):
|
76 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
77 |
+
dataset_org = load_dataset(path)
|
78 |
+
dataset = process_hf_dataset(
|
79 |
+
dataset=dataset_org,
|
80 |
+
tokenizer=tokenizer,
|
81 |
+
max_length=max_length,
|
82 |
+
dataset_map_fn=alpaca_map_fn,
|
83 |
+
template_map_fn=template_map_fn,
|
84 |
+
remove_unused_columns=remove_unused_columns,
|
85 |
+
shuffle_before_pack=True,
|
86 |
+
pack_to_max_length=pack_to_max_length)
|
87 |
+
|
88 |
+
return dataset
|
89 |
+
|
90 |
+
|
91 |
+
def alpaca_data_collator(return_hf_format=False):
|
92 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/arxiv.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import arxiv_map_fn, template_map_fn_factory
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def arxiv_dataset(tokenizer,
|
13 |
+
data_file=None,
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=True,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
# 1. Download data from https://kaggle.com/datasets/Cornell-University/arxiv # noqa: E501
|
20 |
+
# 2. Process data with `./tools/data_preprocess/arxiv.py`
|
21 |
+
if data_file is None:
|
22 |
+
data_file = './data/arxiv_postprocess_csAIcsCLcsCV_20200101.json'
|
23 |
+
dataset_org = load_dataset(path='json', data_files=dict(train=data_file))
|
24 |
+
dataset = process_hf_dataset(
|
25 |
+
dataset=dataset_org,
|
26 |
+
tokenizer=tokenizer,
|
27 |
+
max_length=max_length,
|
28 |
+
dataset_map_fn=arxiv_map_fn,
|
29 |
+
template_map_fn=template_map_fn,
|
30 |
+
remove_unused_columns=remove_unused_columns,
|
31 |
+
shuffle_before_pack=True,
|
32 |
+
pack_to_max_length=pack_to_max_length)
|
33 |
+
|
34 |
+
return dataset
|
35 |
+
|
36 |
+
|
37 |
+
def arxiv_data_collator(return_hf_format=False):
|
38 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/code_alpaca.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import code_alpaca_map_fn, template_map_fn_factory
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def code_alpaca_dataset(tokenizer,
|
13 |
+
path='HuggingFaceH4/CodeAlpaca_20K',
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=True,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
dataset_org = load_dataset(path)
|
20 |
+
dataset = process_hf_dataset(
|
21 |
+
dataset=dataset_org,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_length=max_length,
|
24 |
+
dataset_map_fn=code_alpaca_map_fn,
|
25 |
+
template_map_fn=template_map_fn,
|
26 |
+
remove_unused_columns=remove_unused_columns,
|
27 |
+
shuffle_before_pack=True,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def code_alpaca_data_collator(return_hf_format=False):
|
34 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/colorist.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import colors_map_fn, template_map_fn_factory
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def colorist_dataset(tokenizer,
|
13 |
+
path='burkelibbey/colors',
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=True,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
dataset_org = load_dataset(path)
|
20 |
+
dataset = process_hf_dataset(
|
21 |
+
dataset=dataset_org,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_length=max_length,
|
24 |
+
dataset_map_fn=colors_map_fn,
|
25 |
+
template_map_fn=template_map_fn,
|
26 |
+
remove_unused_columns=remove_unused_columns,
|
27 |
+
shuffle_before_pack=True,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def colorist_data_collator(return_hf_format=False):
|
34 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/lawyer.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
from torch.utils.data import ConcatDataset
|
6 |
+
|
7 |
+
from xtuner.dataset import process_hf_dataset
|
8 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
9 |
+
from xtuner.dataset.map_fns import (crime_kg_assitant_map_fn,
|
10 |
+
law_reference_map_fn,
|
11 |
+
template_map_fn_factory)
|
12 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
13 |
+
|
14 |
+
|
15 |
+
def lawyer_dataset(tokenizer,
|
16 |
+
crime_data_file=None,
|
17 |
+
reference_data_file=None,
|
18 |
+
max_length=2048,
|
19 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
20 |
+
remove_unused_columns=True,
|
21 |
+
pack_to_max_length=True):
|
22 |
+
crime_dataset = lawyer_crime_dataset(
|
23 |
+
tokenizer,
|
24 |
+
data_file=crime_data_file,
|
25 |
+
max_length=max_length,
|
26 |
+
prompt_template=prompt_template,
|
27 |
+
remove_unused_columns=remove_unused_columns,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
reference_dataset = lawyer_reference_dataset(
|
30 |
+
tokenizer,
|
31 |
+
data_file=reference_data_file,
|
32 |
+
max_length=max_length,
|
33 |
+
prompt_template=prompt_template,
|
34 |
+
remove_unused_columns=remove_unused_columns,
|
35 |
+
pack_to_max_length=pack_to_max_length)
|
36 |
+
dataset = ConcatDataset([crime_dataset, reference_dataset])
|
37 |
+
return dataset
|
38 |
+
|
39 |
+
|
40 |
+
def lawyer_data_collator(return_hf_format=False):
|
41 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
42 |
+
|
43 |
+
|
44 |
+
def lawyer_crime_dataset(tokenizer,
|
45 |
+
data_file=None,
|
46 |
+
max_length=2048,
|
47 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
48 |
+
remove_unused_columns=True,
|
49 |
+
pack_to_max_length=True):
|
50 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
51 |
+
# Download data from https://github.com/LiuHC0428/LAW-GPT # noqa: E501
|
52 |
+
if data_file is None:
|
53 |
+
data_file = './data/law/CrimeKgAssitant清洗后_52k.json'
|
54 |
+
dataset_org = load_dataset(path='json', data_files=dict(train=data_file))
|
55 |
+
dataset = process_hf_dataset(
|
56 |
+
dataset=dataset_org,
|
57 |
+
tokenizer=tokenizer,
|
58 |
+
max_length=max_length,
|
59 |
+
dataset_map_fn=crime_kg_assitant_map_fn,
|
60 |
+
template_map_fn=template_map_fn,
|
61 |
+
remove_unused_columns=remove_unused_columns,
|
62 |
+
shuffle_before_pack=True,
|
63 |
+
pack_to_max_length=pack_to_max_length)
|
64 |
+
|
65 |
+
return dataset
|
66 |
+
|
67 |
+
|
68 |
+
def lawyer_crime_data_collator(return_hf_format=False):
|
69 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
70 |
+
|
71 |
+
|
72 |
+
def lawyer_reference_dataset(tokenizer,
|
73 |
+
data_file=None,
|
74 |
+
max_length=2048,
|
75 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
76 |
+
remove_unused_columns=True,
|
77 |
+
pack_to_max_length=True):
|
78 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
79 |
+
# Download data from https://github.com/LiuHC0428/LAW-GPT # noqa: E501
|
80 |
+
if data_file is None:
|
81 |
+
data_file = './data/law/训练数据_带法律依据_92k.json'
|
82 |
+
dataset_org = load_dataset(path='json', data_files=dict(train=data_file))
|
83 |
+
dataset = process_hf_dataset(
|
84 |
+
dataset=dataset_org,
|
85 |
+
tokenizer=tokenizer,
|
86 |
+
max_length=max_length,
|
87 |
+
dataset_map_fn=law_reference_map_fn,
|
88 |
+
template_map_fn=template_map_fn,
|
89 |
+
remove_unused_columns=remove_unused_columns,
|
90 |
+
shuffle_before_pack=True,
|
91 |
+
pack_to_max_length=pack_to_max_length)
|
92 |
+
|
93 |
+
return dataset
|
94 |
+
|
95 |
+
|
96 |
+
def lawyer_reference_data_collator(return_hf_format=False):
|
97 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/medical.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import medical_map_fn, template_map_fn_factory
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def medical_dataset(tokenizer,
|
13 |
+
path='shibing624/medical',
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=False,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
dataset_org = load_dataset(path)
|
20 |
+
dataset = process_hf_dataset(
|
21 |
+
dataset=dataset_org,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_length=max_length,
|
24 |
+
dataset_map_fn=medical_map_fn,
|
25 |
+
template_map_fn=template_map_fn,
|
26 |
+
remove_unused_columns=remove_unused_columns,
|
27 |
+
shuffle_before_pack=True,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def medical_data_collator(return_hf_format=False):
|
34 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/moss_003_sft.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from torch.utils.data import ConcatDataset
|
5 |
+
|
6 |
+
from xtuner.dataset import MOSSSFTDataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
|
9 |
+
|
10 |
+
def moss_003_sft_dataset(tokenizer,
|
11 |
+
plugins_data_file=None,
|
12 |
+
no_plugins_data_file=None,
|
13 |
+
bot_name=None,
|
14 |
+
max_length=2048):
|
15 |
+
plugins = moss_003_sft_plugins_dataset(
|
16 |
+
tokenizer,
|
17 |
+
data_file=plugins_data_file,
|
18 |
+
bot_name=bot_name,
|
19 |
+
max_length=max_length)
|
20 |
+
no_plugins = moss_003_sft_no_plugins_dataset(
|
21 |
+
tokenizer,
|
22 |
+
data_file=no_plugins_data_file,
|
23 |
+
bot_name=bot_name,
|
24 |
+
max_length=max_length)
|
25 |
+
dataset = ConcatDataset([plugins, no_plugins])
|
26 |
+
return dataset
|
27 |
+
|
28 |
+
|
29 |
+
def moss_003_sft_data_collator(return_hf_format=False):
|
30 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
31 |
+
|
32 |
+
|
33 |
+
def moss_003_sft_no_plugins_dataset(tokenizer,
|
34 |
+
data_file=None,
|
35 |
+
bot_name=None,
|
36 |
+
max_length=2048):
|
37 |
+
|
38 |
+
# Download data from https://huggingface.co/datasets/fnlp/moss-003-sft-data
|
39 |
+
if data_file is None:
|
40 |
+
data_file = './data/moss-003-sft-no-tools.jsonl'
|
41 |
+
dataset = MOSSSFTDataset(
|
42 |
+
data_file=data_file,
|
43 |
+
bot_name=bot_name,
|
44 |
+
tokenizer=tokenizer,
|
45 |
+
max_length=max_length)
|
46 |
+
|
47 |
+
return dataset
|
48 |
+
|
49 |
+
|
50 |
+
def moss_003_sft_no_plugins_data_collator(return_hf_format=False):
|
51 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
52 |
+
|
53 |
+
|
54 |
+
def moss_003_sft_plugins_dataset(tokenizer,
|
55 |
+
data_file=None,
|
56 |
+
bot_name=None,
|
57 |
+
max_length=2048):
|
58 |
+
|
59 |
+
# Download data from https://huggingface.co/datasets/fnlp/moss-003-sft-data
|
60 |
+
if data_file is None:
|
61 |
+
data_file = './data/conversations_with_tools_with_inner_instruction_no_text2image_train_all_random_meta0.5_0.1_0.01_moss_0709.jsonl' # noqa: E501
|
62 |
+
dataset = MOSSSFTDataset(
|
63 |
+
data_file=data_file,
|
64 |
+
bot_name=bot_name,
|
65 |
+
tokenizer=tokenizer,
|
66 |
+
max_length=max_length)
|
67 |
+
|
68 |
+
return dataset
|
69 |
+
|
70 |
+
|
71 |
+
def moss_003_sft_plugins_data_collator(return_hf_format=False):
|
72 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/oasst1.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def oasst1_dataset(tokenizer,
|
13 |
+
path='timdettmers/openassistant-guanaco',
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=False,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
dataset_org = load_dataset(path)
|
20 |
+
dataset = process_hf_dataset(
|
21 |
+
dataset=dataset_org,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_length=max_length,
|
24 |
+
dataset_map_fn=oasst1_map_fn,
|
25 |
+
template_map_fn=template_map_fn,
|
26 |
+
remove_unused_columns=remove_unused_columns,
|
27 |
+
shuffle_before_pack=True,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def oasst1_data_collator(return_hf_format=False):
|
34 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/open_orca.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import openorca_map_fn, template_map_fn_factory
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def openorca_dataset(tokenizer,
|
13 |
+
path='Open-Orca/OpenOrca',
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=True,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
dataset_org = load_dataset(path)
|
20 |
+
dataset = process_hf_dataset(
|
21 |
+
dataset=dataset_org,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_length=max_length,
|
24 |
+
dataset_map_fn=openorca_map_fn,
|
25 |
+
template_map_fn=template_map_fn,
|
26 |
+
remove_unused_columns=remove_unused_columns,
|
27 |
+
shuffle_before_pack=True,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def openorca_data_collator(return_hf_format=False):
|
34 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/sql.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import sql_map_fn, template_map_fn_factory
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def sql_dataset(tokenizer,
|
13 |
+
path='b-mc2/sql-create-context',
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=True,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
dataset_org = load_dataset(path)
|
20 |
+
dataset = process_hf_dataset(
|
21 |
+
dataset=dataset_org,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_length=max_length,
|
24 |
+
dataset_map_fn=sql_map_fn,
|
25 |
+
template_map_fn=template_map_fn,
|
26 |
+
remove_unused_columns=remove_unused_columns,
|
27 |
+
shuffle_before_pack=True,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def sql_data_collator(return_hf_format=False):
|
34 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/tiny_codes.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import template_map_fn_factory, tiny_codes_map_fn
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def tiny_codes_dataset(tokenizer,
|
13 |
+
path='nampdn-ai/tiny-codes',
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=True,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
dataset_org = load_dataset(path)
|
20 |
+
dataset = process_hf_dataset(
|
21 |
+
dataset=dataset_org,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_length=max_length,
|
24 |
+
dataset_map_fn=tiny_codes_map_fn,
|
25 |
+
template_map_fn=template_map_fn,
|
26 |
+
remove_unused_columns=remove_unused_columns,
|
27 |
+
shuffle_before_pack=True,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def tiny_codes_data_collator(return_hf_format=False):
|
34 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/datasets/wizardlm.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from xtuner.dataset import process_hf_dataset
|
7 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
8 |
+
from xtuner.dataset.map_fns import template_map_fn_factory, wizardlm_map_fn
|
9 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
10 |
+
|
11 |
+
|
12 |
+
def wizardlm_dataset(tokenizer,
|
13 |
+
path='WizardLM/WizardLM_evol_instruct_V2_196k',
|
14 |
+
max_length=2048,
|
15 |
+
prompt_template=PROMPT_TEMPLATE.default,
|
16 |
+
remove_unused_columns=False,
|
17 |
+
pack_to_max_length=True):
|
18 |
+
template_map_fn = template_map_fn_factory(template=prompt_template)
|
19 |
+
dataset_org = load_dataset(path)
|
20 |
+
dataset = process_hf_dataset(
|
21 |
+
dataset=dataset_org,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_length=max_length,
|
24 |
+
dataset_map_fn=wizardlm_map_fn,
|
25 |
+
template_map_fn=template_map_fn,
|
26 |
+
remove_unused_columns=remove_unused_columns,
|
27 |
+
shuffle_before_pack=True,
|
28 |
+
pack_to_max_length=pack_to_max_length)
|
29 |
+
|
30 |
+
return dataset
|
31 |
+
|
32 |
+
|
33 |
+
def wizardlm_data_collator(return_hf_format=False):
|
34 |
+
return partial(default_collate_fn, return_hf_format=return_hf_format)
|
xtuner/apis/model.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from peft import LoraConfig
|
4 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
5 |
+
BitsAndBytesConfig)
|
6 |
+
|
7 |
+
from xtuner.model import SupervisedFinetune
|
8 |
+
|
9 |
+
__all__ = ['build_model', 'build_lora_model', 'build_qlora_model']
|
10 |
+
|
11 |
+
|
12 |
+
def build_qlora_model(model_name_or_path,
|
13 |
+
quantization_config=None,
|
14 |
+
lora_config=None,
|
15 |
+
return_tokenizer=True):
|
16 |
+
|
17 |
+
if quantization_config is None:
|
18 |
+
quantization_config = BitsAndBytesConfig(
|
19 |
+
load_in_4bit=True,
|
20 |
+
load_in_8bit=False,
|
21 |
+
llm_int8_threshold=6.0,
|
22 |
+
llm_int8_has_fp16_weight=False,
|
23 |
+
bnb_4bit_compute_dtype=torch.float16,
|
24 |
+
bnb_4bit_use_double_quant=True,
|
25 |
+
bnb_4bit_quant_type='nf4')
|
26 |
+
if lora_config is None:
|
27 |
+
lora_config = LoraConfig(
|
28 |
+
r=64,
|
29 |
+
lora_alpha=16,
|
30 |
+
lora_dropout=0.1,
|
31 |
+
bias='none',
|
32 |
+
task_type='CAUSAL_LM')
|
33 |
+
|
34 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
35 |
+
model_name_or_path,
|
36 |
+
torch_dtype=torch.float16,
|
37 |
+
trust_remote_code=True,
|
38 |
+
quantization_config=quantization_config)
|
39 |
+
|
40 |
+
model = SupervisedFinetune(llm, lora=lora_config)
|
41 |
+
|
42 |
+
if return_tokenizer:
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
44 |
+
model_name_or_path,
|
45 |
+
trust_remote_code=True,
|
46 |
+
encode_special_tokens=True)
|
47 |
+
return model.llm, tokenizer
|
48 |
+
else:
|
49 |
+
return model.llm
|
50 |
+
|
51 |
+
|
52 |
+
def build_lora_model(model_name_or_path,
|
53 |
+
lora_config=None,
|
54 |
+
return_tokenizer=True):
|
55 |
+
if lora_config is None:
|
56 |
+
lora_config = LoraConfig(
|
57 |
+
r=64,
|
58 |
+
lora_alpha=16,
|
59 |
+
lora_dropout=0.1,
|
60 |
+
bias='none',
|
61 |
+
task_type='CAUSAL_LM')
|
62 |
+
|
63 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
64 |
+
model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True)
|
65 |
+
|
66 |
+
model = SupervisedFinetune(llm, lora=lora_config)
|
67 |
+
|
68 |
+
if return_tokenizer:
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
70 |
+
model_name_or_path,
|
71 |
+
trust_remote_code=True,
|
72 |
+
encode_special_tokens=True)
|
73 |
+
return model.llm, tokenizer
|
74 |
+
else:
|
75 |
+
return model.llm
|
76 |
+
|
77 |
+
|
78 |
+
def build_model(model_name_or_path, return_tokenizer=True):
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(
|
80 |
+
model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True)
|
81 |
+
|
82 |
+
if return_tokenizer:
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
84 |
+
model_name_or_path,
|
85 |
+
trust_remote_code=True,
|
86 |
+
encode_special_tokens=True)
|
87 |
+
return model, tokenizer
|
88 |
+
else:
|
89 |
+
return model
|
xtuner/apis/training_args.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from dataclasses import dataclass, field
|
3 |
+
from typing import Union
|
4 |
+
|
5 |
+
from transformers import TrainingArguments
|
6 |
+
from transformers.trainer_utils import IntervalStrategy, SchedulerType
|
7 |
+
|
8 |
+
__all__ = ['DefaultTrainingArguments']
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class DefaultTrainingArguments(TrainingArguments):
|
13 |
+
# custom
|
14 |
+
model_name_or_path: str = field(
|
15 |
+
default=None,
|
16 |
+
metadata={'help': 'model name or path.'},
|
17 |
+
)
|
18 |
+
dataset_name_or_path: str = field(
|
19 |
+
default=None,
|
20 |
+
metadata={'help': 'dataset name or path.'},
|
21 |
+
)
|
22 |
+
|
23 |
+
# huggingface
|
24 |
+
default_output_dir = './work_dirs'
|
25 |
+
default_do_train = True
|
26 |
+
default_per_device_train_batch_size = 1
|
27 |
+
default_learning_rate = 2e-5
|
28 |
+
default_save_strategy = 'epoch'
|
29 |
+
default_lr_scheduler_type = 'cosine'
|
30 |
+
default_logging_steps = 5
|
31 |
+
|
32 |
+
output_dir: str = field(
|
33 |
+
default=default_output_dir,
|
34 |
+
metadata={
|
35 |
+
'help': ('The output directory where the model predictions and '
|
36 |
+
'checkpoints will be written.')
|
37 |
+
})
|
38 |
+
do_train: bool = field(
|
39 |
+
default=default_do_train,
|
40 |
+
metadata={'help': 'Whether to run training.'})
|
41 |
+
per_device_train_batch_size: int = field(
|
42 |
+
default=default_per_device_train_batch_size,
|
43 |
+
metadata={'help': 'Batch size per GPU/TPU core/CPU for training.'})
|
44 |
+
learning_rate: float = field(
|
45 |
+
default=default_learning_rate,
|
46 |
+
metadata={'help': 'The initial learning rate for AdamW.'})
|
47 |
+
save_strategy: Union[IntervalStrategy, str] = field(
|
48 |
+
default=default_save_strategy,
|
49 |
+
metadata={'help': 'The checkpoint save strategy to use.'},
|
50 |
+
)
|
51 |
+
lr_scheduler_type: Union[SchedulerType, str] = field(
|
52 |
+
default=default_lr_scheduler_type,
|
53 |
+
metadata={'help': 'The scheduler type to use.'},
|
54 |
+
)
|
55 |
+
logging_steps: float = field(
|
56 |
+
default=default_logging_steps,
|
57 |
+
metadata={
|
58 |
+
'help': ('Log every X updates steps. Should be an integer or a '
|
59 |
+
'float in range `[0,1)`. If smaller than 1, will be '
|
60 |
+
'interpreted as ratio of total training steps.')
|
61 |
+
})
|
xtuner/configs/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
def get_cfgs_name_path():
|
6 |
+
path = os.path.dirname(__file__)
|
7 |
+
mapping = {}
|
8 |
+
for root, dirs, files in os.walk(path):
|
9 |
+
for file_ in files:
|
10 |
+
if file_.endswith(
|
11 |
+
('.py', '.json')
|
12 |
+
) and not file_.startswith('.') and not file_.startswith('_'):
|
13 |
+
mapping[os.path.splitext(file_)[0]] = os.path.join(root, file_)
|
14 |
+
return mapping
|
15 |
+
|
16 |
+
|
17 |
+
cfgs_name_path = get_cfgs_name_path()
|
18 |
+
|
19 |
+
__all__ = ['cfgs_name_path']
|
xtuner/configs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (598 Bytes). View file
|
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_alpaca_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
alpaca_en = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=alpaca_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=alpaca_en,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_alpaca_enzh_e3.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
|
16 |
+
template_map_fn_factory)
|
17 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
18 |
+
VarlenAttnArgsToMessageHubHook)
|
19 |
+
from xtuner.engine.runner import TrainLoop
|
20 |
+
from xtuner.model import SupervisedFinetune
|
21 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
22 |
+
|
23 |
+
#######################################################################
|
24 |
+
# PART 1 Settings #
|
25 |
+
#######################################################################
|
26 |
+
# Model
|
27 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
28 |
+
use_varlen_attn = False
|
29 |
+
|
30 |
+
# Data
|
31 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
32 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
33 |
+
prompt_template = PROMPT_TEMPLATE.default
|
34 |
+
max_length = 2048
|
35 |
+
pack_to_max_length = True
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 1 # per_device
|
39 |
+
accumulative_counts = 16
|
40 |
+
dataloader_num_workers = 0
|
41 |
+
max_epochs = 3
|
42 |
+
optim_type = AdamW
|
43 |
+
lr = 2e-4
|
44 |
+
betas = (0.9, 0.999)
|
45 |
+
weight_decay = 0
|
46 |
+
max_norm = 1 # grad clip
|
47 |
+
warmup_ratio = 0.03
|
48 |
+
|
49 |
+
# Save
|
50 |
+
save_steps = 500
|
51 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
52 |
+
|
53 |
+
# Evaluate the generation performance during the training
|
54 |
+
evaluation_freq = 500
|
55 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
56 |
+
evaluation_inputs = [
|
57 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
58 |
+
]
|
59 |
+
|
60 |
+
#######################################################################
|
61 |
+
# PART 2 Model & Tokenizer #
|
62 |
+
#######################################################################
|
63 |
+
tokenizer = dict(
|
64 |
+
type=AutoTokenizer.from_pretrained,
|
65 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
66 |
+
trust_remote_code=True,
|
67 |
+
padding_side='right')
|
68 |
+
|
69 |
+
model = dict(
|
70 |
+
type=SupervisedFinetune,
|
71 |
+
use_varlen_attn=use_varlen_attn,
|
72 |
+
llm=dict(
|
73 |
+
type=AutoModelForCausalLM.from_pretrained,
|
74 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
75 |
+
trust_remote_code=True,
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
quantization_config=dict(
|
78 |
+
type=BitsAndBytesConfig,
|
79 |
+
load_in_4bit=True,
|
80 |
+
load_in_8bit=False,
|
81 |
+
llm_int8_threshold=6.0,
|
82 |
+
llm_int8_has_fp16_weight=False,
|
83 |
+
bnb_4bit_compute_dtype=torch.float16,
|
84 |
+
bnb_4bit_use_double_quant=True,
|
85 |
+
bnb_4bit_quant_type='nf4')),
|
86 |
+
lora=dict(
|
87 |
+
type=LoraConfig,
|
88 |
+
r=64,
|
89 |
+
lora_alpha=16,
|
90 |
+
lora_dropout=0.1,
|
91 |
+
bias='none',
|
92 |
+
task_type='CAUSAL_LM'))
|
93 |
+
|
94 |
+
#######################################################################
|
95 |
+
# PART 3 Dataset & Dataloader #
|
96 |
+
#######################################################################
|
97 |
+
alpaca_en = dict(
|
98 |
+
type=process_hf_dataset,
|
99 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
100 |
+
tokenizer=tokenizer,
|
101 |
+
max_length=max_length,
|
102 |
+
dataset_map_fn=alpaca_map_fn,
|
103 |
+
template_map_fn=dict(
|
104 |
+
type=template_map_fn_factory, template=prompt_template),
|
105 |
+
remove_unused_columns=True,
|
106 |
+
shuffle_before_pack=True,
|
107 |
+
pack_to_max_length=pack_to_max_length,
|
108 |
+
use_varlen_attn=use_varlen_attn)
|
109 |
+
|
110 |
+
alpaca_zh = dict(
|
111 |
+
type=process_hf_dataset,
|
112 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
113 |
+
tokenizer=tokenizer,
|
114 |
+
max_length=max_length,
|
115 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
116 |
+
template_map_fn=dict(
|
117 |
+
type=template_map_fn_factory, template=prompt_template),
|
118 |
+
remove_unused_columns=True,
|
119 |
+
shuffle_before_pack=True,
|
120 |
+
pack_to_max_length=pack_to_max_length,
|
121 |
+
use_varlen_attn=use_varlen_attn)
|
122 |
+
|
123 |
+
train_dataset = dict(type=ConcatDataset, datasets=[alpaca_en, alpaca_zh])
|
124 |
+
|
125 |
+
train_dataloader = dict(
|
126 |
+
batch_size=batch_size,
|
127 |
+
num_workers=dataloader_num_workers,
|
128 |
+
dataset=train_dataset,
|
129 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
130 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
131 |
+
|
132 |
+
#######################################################################
|
133 |
+
# PART 4 Scheduler & Optimizer #
|
134 |
+
#######################################################################
|
135 |
+
# optimizer
|
136 |
+
optim_wrapper = dict(
|
137 |
+
type=AmpOptimWrapper,
|
138 |
+
optimizer=dict(
|
139 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
140 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
141 |
+
accumulative_counts=accumulative_counts,
|
142 |
+
loss_scale='dynamic',
|
143 |
+
dtype='float16')
|
144 |
+
|
145 |
+
# learning policy
|
146 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
147 |
+
param_scheduler = [
|
148 |
+
dict(
|
149 |
+
type=LinearLR,
|
150 |
+
start_factor=1e-5,
|
151 |
+
by_epoch=True,
|
152 |
+
begin=0,
|
153 |
+
end=warmup_ratio * max_epochs,
|
154 |
+
convert_to_iter_based=True),
|
155 |
+
dict(
|
156 |
+
type=CosineAnnealingLR,
|
157 |
+
eta_min=0.0,
|
158 |
+
by_epoch=True,
|
159 |
+
begin=warmup_ratio * max_epochs,
|
160 |
+
end=max_epochs,
|
161 |
+
convert_to_iter_based=True)
|
162 |
+
]
|
163 |
+
|
164 |
+
# train, val, test setting
|
165 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
166 |
+
|
167 |
+
#######################################################################
|
168 |
+
# PART 5 Runtime #
|
169 |
+
#######################################################################
|
170 |
+
# Log the dialogue periodically during the training process, optional
|
171 |
+
custom_hooks = [
|
172 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
173 |
+
dict(
|
174 |
+
type=EvaluateChatHook,
|
175 |
+
tokenizer=tokenizer,
|
176 |
+
every_n_iters=evaluation_freq,
|
177 |
+
evaluation_inputs=evaluation_inputs,
|
178 |
+
system=SYSTEM,
|
179 |
+
prompt_template=prompt_template)
|
180 |
+
]
|
181 |
+
|
182 |
+
if use_varlen_attn:
|
183 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
184 |
+
|
185 |
+
# configure default hooks
|
186 |
+
default_hooks = dict(
|
187 |
+
# record the time of every iteration.
|
188 |
+
timer=dict(type=IterTimerHook),
|
189 |
+
# print log every 10 iterations.
|
190 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
191 |
+
# enable the parameter scheduler.
|
192 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
193 |
+
# save checkpoint per `save_steps`.
|
194 |
+
checkpoint=dict(
|
195 |
+
type=CheckpointHook,
|
196 |
+
by_epoch=False,
|
197 |
+
interval=save_steps,
|
198 |
+
max_keep_ckpts=save_total_limit),
|
199 |
+
# set sampler seed in distributed evrionment.
|
200 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
201 |
+
)
|
202 |
+
|
203 |
+
# configure environment
|
204 |
+
env_cfg = dict(
|
205 |
+
# whether to enable cudnn benchmark
|
206 |
+
cudnn_benchmark=False,
|
207 |
+
# set multi process parameters
|
208 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
209 |
+
# set distributed parameters
|
210 |
+
dist_cfg=dict(backend='nccl'),
|
211 |
+
)
|
212 |
+
|
213 |
+
# set visualizer
|
214 |
+
visualizer = None
|
215 |
+
|
216 |
+
# set log level
|
217 |
+
log_level = 'INFO'
|
218 |
+
|
219 |
+
# load from which checkpoint
|
220 |
+
load_from = None
|
221 |
+
|
222 |
+
# whether to resume training from the loaded checkpoint
|
223 |
+
resume = False
|
224 |
+
|
225 |
+
# Defaults to use random seed and disable `deterministic`
|
226 |
+
randomness = dict(seed=None, deterministic=False)
|
227 |
+
|
228 |
+
# set log processor
|
229 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_alpaca_enzh_oasst1_e3.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
|
16 |
+
oasst1_map_fn, template_map_fn_factory)
|
17 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
18 |
+
VarlenAttnArgsToMessageHubHook)
|
19 |
+
from xtuner.engine.runner import TrainLoop
|
20 |
+
from xtuner.model import SupervisedFinetune
|
21 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
22 |
+
|
23 |
+
#######################################################################
|
24 |
+
# PART 1 Settings #
|
25 |
+
#######################################################################
|
26 |
+
# Model
|
27 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
28 |
+
use_varlen_attn = False
|
29 |
+
|
30 |
+
# Data
|
31 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
32 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
33 |
+
oasst1_path = 'timdettmers/openassistant-guanaco'
|
34 |
+
prompt_template = PROMPT_TEMPLATE.default
|
35 |
+
max_length = 2048
|
36 |
+
pack_to_max_length = True
|
37 |
+
|
38 |
+
# Scheduler & Optimizer
|
39 |
+
batch_size = 1 # per_device
|
40 |
+
accumulative_counts = 16
|
41 |
+
dataloader_num_workers = 0
|
42 |
+
max_epochs = 3
|
43 |
+
optim_type = AdamW
|
44 |
+
lr = 2e-4
|
45 |
+
betas = (0.9, 0.999)
|
46 |
+
weight_decay = 0
|
47 |
+
max_norm = 1 # grad clip
|
48 |
+
warmup_ratio = 0.03
|
49 |
+
|
50 |
+
# Save
|
51 |
+
save_steps = 500
|
52 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
53 |
+
|
54 |
+
# Evaluate the generation performance during the training
|
55 |
+
evaluation_freq = 500
|
56 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
57 |
+
evaluation_inputs = [
|
58 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
59 |
+
]
|
60 |
+
|
61 |
+
#######################################################################
|
62 |
+
# PART 2 Model & Tokenizer #
|
63 |
+
#######################################################################
|
64 |
+
tokenizer = dict(
|
65 |
+
type=AutoTokenizer.from_pretrained,
|
66 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
67 |
+
trust_remote_code=True,
|
68 |
+
padding_side='right')
|
69 |
+
|
70 |
+
model = dict(
|
71 |
+
type=SupervisedFinetune,
|
72 |
+
use_varlen_attn=use_varlen_attn,
|
73 |
+
llm=dict(
|
74 |
+
type=AutoModelForCausalLM.from_pretrained,
|
75 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
76 |
+
trust_remote_code=True,
|
77 |
+
torch_dtype=torch.float16,
|
78 |
+
quantization_config=dict(
|
79 |
+
type=BitsAndBytesConfig,
|
80 |
+
load_in_4bit=True,
|
81 |
+
load_in_8bit=False,
|
82 |
+
llm_int8_threshold=6.0,
|
83 |
+
llm_int8_has_fp16_weight=False,
|
84 |
+
bnb_4bit_compute_dtype=torch.float16,
|
85 |
+
bnb_4bit_use_double_quant=True,
|
86 |
+
bnb_4bit_quant_type='nf4')),
|
87 |
+
lora=dict(
|
88 |
+
type=LoraConfig,
|
89 |
+
r=64,
|
90 |
+
lora_alpha=16,
|
91 |
+
lora_dropout=0.1,
|
92 |
+
bias='none',
|
93 |
+
task_type='CAUSAL_LM'))
|
94 |
+
|
95 |
+
#######################################################################
|
96 |
+
# PART 3 Dataset & Dataloader #
|
97 |
+
#######################################################################
|
98 |
+
alpaca_en = dict(
|
99 |
+
type=process_hf_dataset,
|
100 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
max_length=max_length,
|
103 |
+
dataset_map_fn=alpaca_map_fn,
|
104 |
+
template_map_fn=dict(
|
105 |
+
type=template_map_fn_factory, template=prompt_template),
|
106 |
+
remove_unused_columns=True,
|
107 |
+
shuffle_before_pack=True,
|
108 |
+
pack_to_max_length=pack_to_max_length,
|
109 |
+
use_varlen_attn=use_varlen_attn)
|
110 |
+
|
111 |
+
alpaca_zh = dict(
|
112 |
+
type=process_hf_dataset,
|
113 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
114 |
+
tokenizer=tokenizer,
|
115 |
+
max_length=max_length,
|
116 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
117 |
+
template_map_fn=dict(
|
118 |
+
type=template_map_fn_factory, template=prompt_template),
|
119 |
+
remove_unused_columns=True,
|
120 |
+
shuffle_before_pack=True,
|
121 |
+
pack_to_max_length=pack_to_max_length,
|
122 |
+
use_varlen_attn=use_varlen_attn)
|
123 |
+
|
124 |
+
oasst1 = dict(
|
125 |
+
type=process_hf_dataset,
|
126 |
+
dataset=dict(type=load_dataset, path=oasst1_path),
|
127 |
+
tokenizer=tokenizer,
|
128 |
+
max_length=max_length,
|
129 |
+
dataset_map_fn=oasst1_map_fn,
|
130 |
+
template_map_fn=dict(
|
131 |
+
type=template_map_fn_factory, template=prompt_template),
|
132 |
+
remove_unused_columns=True,
|
133 |
+
shuffle_before_pack=True,
|
134 |
+
pack_to_max_length=pack_to_max_length,
|
135 |
+
use_varlen_attn=use_varlen_attn)
|
136 |
+
|
137 |
+
train_dataset = dict(
|
138 |
+
type=ConcatDataset, datasets=[alpaca_en, alpaca_zh, oasst1])
|
139 |
+
|
140 |
+
train_dataloader = dict(
|
141 |
+
batch_size=batch_size,
|
142 |
+
num_workers=dataloader_num_workers,
|
143 |
+
dataset=train_dataset,
|
144 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
145 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
146 |
+
|
147 |
+
#######################################################################
|
148 |
+
# PART 4 Scheduler & Optimizer #
|
149 |
+
#######################################################################
|
150 |
+
# optimizer
|
151 |
+
optim_wrapper = dict(
|
152 |
+
type=AmpOptimWrapper,
|
153 |
+
optimizer=dict(
|
154 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
155 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
156 |
+
accumulative_counts=accumulative_counts,
|
157 |
+
loss_scale='dynamic',
|
158 |
+
dtype='float16')
|
159 |
+
|
160 |
+
# learning policy
|
161 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
162 |
+
param_scheduler = [
|
163 |
+
dict(
|
164 |
+
type=LinearLR,
|
165 |
+
start_factor=1e-5,
|
166 |
+
by_epoch=True,
|
167 |
+
begin=0,
|
168 |
+
end=warmup_ratio * max_epochs,
|
169 |
+
convert_to_iter_based=True),
|
170 |
+
dict(
|
171 |
+
type=CosineAnnealingLR,
|
172 |
+
eta_min=0.0,
|
173 |
+
by_epoch=True,
|
174 |
+
begin=warmup_ratio * max_epochs,
|
175 |
+
end=max_epochs,
|
176 |
+
convert_to_iter_based=True)
|
177 |
+
]
|
178 |
+
|
179 |
+
# train, val, test setting
|
180 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
181 |
+
|
182 |
+
#######################################################################
|
183 |
+
# PART 5 Runtime #
|
184 |
+
#######################################################################
|
185 |
+
# Log the dialogue periodically during the training process, optional
|
186 |
+
custom_hooks = [
|
187 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
188 |
+
dict(
|
189 |
+
type=EvaluateChatHook,
|
190 |
+
tokenizer=tokenizer,
|
191 |
+
every_n_iters=evaluation_freq,
|
192 |
+
evaluation_inputs=evaluation_inputs,
|
193 |
+
system=SYSTEM,
|
194 |
+
prompt_template=prompt_template)
|
195 |
+
]
|
196 |
+
|
197 |
+
if use_varlen_attn:
|
198 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
199 |
+
|
200 |
+
# configure default hooks
|
201 |
+
default_hooks = dict(
|
202 |
+
# record the time of every iteration.
|
203 |
+
timer=dict(type=IterTimerHook),
|
204 |
+
# print log every 10 iterations.
|
205 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
206 |
+
# enable the parameter scheduler.
|
207 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
208 |
+
# save checkpoint per `save_steps`.
|
209 |
+
checkpoint=dict(
|
210 |
+
type=CheckpointHook,
|
211 |
+
by_epoch=False,
|
212 |
+
interval=save_steps,
|
213 |
+
max_keep_ckpts=save_total_limit),
|
214 |
+
# set sampler seed in distributed evrionment.
|
215 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
216 |
+
)
|
217 |
+
|
218 |
+
# configure environment
|
219 |
+
env_cfg = dict(
|
220 |
+
# whether to enable cudnn benchmark
|
221 |
+
cudnn_benchmark=False,
|
222 |
+
# set multi process parameters
|
223 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
224 |
+
# set distributed parameters
|
225 |
+
dist_cfg=dict(backend='nccl'),
|
226 |
+
)
|
227 |
+
|
228 |
+
# set visualizer
|
229 |
+
visualizer = None
|
230 |
+
|
231 |
+
# set log level
|
232 |
+
log_level = 'INFO'
|
233 |
+
|
234 |
+
# load from which checkpoint
|
235 |
+
load_from = None
|
236 |
+
|
237 |
+
# whether to resume training from the loaded checkpoint
|
238 |
+
resume = False
|
239 |
+
|
240 |
+
# Defaults to use random seed and disable `deterministic`
|
241 |
+
randomness = dict(seed=None, deterministic=False)
|
242 |
+
|
243 |
+
# set log processor
|
244 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_alpaca_zh_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_zh_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
alpaca_zh = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=alpaca_zh,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_arxiv_gentitle_e3.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import arxiv_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
# 1. Download data from https://kaggle.com/datasets/Cornell-University/arxiv
|
31 |
+
# 2. Process data by `xtuner preprocess arxiv ${DOWNLOADED_DATA} ./data/arxiv_data.json [optional arguments]` # noqa: E501
|
32 |
+
data_path = './data/arxiv_data.json'
|
33 |
+
prompt_template = PROMPT_TEMPLATE.default
|
34 |
+
max_length = 2048
|
35 |
+
pack_to_max_length = True
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 1 # per_device
|
39 |
+
accumulative_counts = 16
|
40 |
+
dataloader_num_workers = 0
|
41 |
+
max_epochs = 3
|
42 |
+
optim_type = AdamW
|
43 |
+
lr = 2e-4
|
44 |
+
betas = (0.9, 0.999)
|
45 |
+
weight_decay = 0
|
46 |
+
max_norm = 1 # grad clip
|
47 |
+
warmup_ratio = 0.03
|
48 |
+
|
49 |
+
# Save
|
50 |
+
save_steps = 500
|
51 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
52 |
+
|
53 |
+
# Evaluate the generation performance during the training
|
54 |
+
evaluation_freq = 500
|
55 |
+
SYSTEM = SYSTEM_TEMPLATE.arxiv_gentile
|
56 |
+
evaluation_inputs = [
|
57 |
+
('We present InternLM, a multilingual foundational language '
|
58 |
+
'model with 104B parameters. InternLM is pre-trained on a large '
|
59 |
+
'corpora with 1.6T tokens with a multi-phase progressive '
|
60 |
+
'process, and then fine-tuned to align with human preferences. '
|
61 |
+
'We also developed a training system called Uniscale-LLM for '
|
62 |
+
'efficient large language model training. The evaluation on a '
|
63 |
+
'number of benchmarks shows that InternLM achieves '
|
64 |
+
'state-of-the-art performance in multiple aspects, including '
|
65 |
+
'knowledge understanding, reading comprehension, mathematics, '
|
66 |
+
'and coding. With such well-rounded capabilities, InternLM '
|
67 |
+
'achieves outstanding performances on comprehensive exams, '
|
68 |
+
'including MMLU, AGIEval, C-Eval and GAOKAO-Bench, without '
|
69 |
+
'resorting to external tools. On these benchmarks, InternLM '
|
70 |
+
'not only significantly outperforms open-source models, but '
|
71 |
+
'also obtains superior performance compared to ChatGPT. Also, '
|
72 |
+
'InternLM demonstrates excellent capability of understanding '
|
73 |
+
'Chinese language and Chinese culture, which makes it a '
|
74 |
+
'suitable foundation model to support Chinese-oriented language '
|
75 |
+
'applications. This manuscript gives a detailed study of '
|
76 |
+
'our results, with benchmarks and examples across a diverse '
|
77 |
+
'set of knowledge domains and tasks.'),
|
78 |
+
('In this work, we develop and release Llama 2, a collection of '
|
79 |
+
'pretrained and fine-tuned large language models (LLMs) ranging '
|
80 |
+
'in scale from 7 billion to 70 billion parameters.\nOur '
|
81 |
+
'fine-tuned LLMs, called LLAMA 2-CHAT, are optimized for '
|
82 |
+
'dialogue use cases. Our models outperform open-source chat '
|
83 |
+
'models on most benchmarks we tested, and based on our human '
|
84 |
+
'evaluations for helpfulness and safety, may be a suitable '
|
85 |
+
'substitute for closedsource models. We provide a detailed '
|
86 |
+
'description of our approach to fine-tuning and safety '
|
87 |
+
'improvements of LLAMA 2-CHAT in order to enable the community '
|
88 |
+
'to build on our work and contribute to the responsible '
|
89 |
+
'development of LLMs.')
|
90 |
+
]
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 2 Model & Tokenizer #
|
94 |
+
#######################################################################
|
95 |
+
tokenizer = dict(
|
96 |
+
type=AutoTokenizer.from_pretrained,
|
97 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
98 |
+
trust_remote_code=True,
|
99 |
+
padding_side='right')
|
100 |
+
|
101 |
+
model = dict(
|
102 |
+
type=SupervisedFinetune,
|
103 |
+
use_varlen_attn=use_varlen_attn,
|
104 |
+
llm=dict(
|
105 |
+
type=AutoModelForCausalLM.from_pretrained,
|
106 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
107 |
+
trust_remote_code=True,
|
108 |
+
torch_dtype=torch.float16,
|
109 |
+
quantization_config=dict(
|
110 |
+
type=BitsAndBytesConfig,
|
111 |
+
load_in_4bit=True,
|
112 |
+
load_in_8bit=False,
|
113 |
+
llm_int8_threshold=6.0,
|
114 |
+
llm_int8_has_fp16_weight=False,
|
115 |
+
bnb_4bit_compute_dtype=torch.float16,
|
116 |
+
bnb_4bit_use_double_quant=True,
|
117 |
+
bnb_4bit_quant_type='nf4')),
|
118 |
+
lora=dict(
|
119 |
+
type=LoraConfig,
|
120 |
+
r=64,
|
121 |
+
lora_alpha=16,
|
122 |
+
lora_dropout=0.1,
|
123 |
+
bias='none',
|
124 |
+
task_type='CAUSAL_LM'))
|
125 |
+
|
126 |
+
#######################################################################
|
127 |
+
# PART 3 Dataset & Dataloader #
|
128 |
+
#######################################################################
|
129 |
+
train_dataset = dict(
|
130 |
+
type=process_hf_dataset,
|
131 |
+
dataset=dict(
|
132 |
+
type=load_dataset, path='json', data_files=dict(train=data_path)),
|
133 |
+
tokenizer=tokenizer,
|
134 |
+
max_length=max_length,
|
135 |
+
dataset_map_fn=arxiv_map_fn,
|
136 |
+
template_map_fn=dict(
|
137 |
+
type=template_map_fn_factory, template=prompt_template),
|
138 |
+
remove_unused_columns=True,
|
139 |
+
shuffle_before_pack=True,
|
140 |
+
pack_to_max_length=pack_to_max_length,
|
141 |
+
use_varlen_attn=use_varlen_attn)
|
142 |
+
|
143 |
+
train_dataloader = dict(
|
144 |
+
batch_size=batch_size,
|
145 |
+
num_workers=dataloader_num_workers,
|
146 |
+
dataset=train_dataset,
|
147 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
148 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 4 Scheduler & Optimizer #
|
152 |
+
#######################################################################
|
153 |
+
# optimizer
|
154 |
+
optim_wrapper = dict(
|
155 |
+
type=AmpOptimWrapper,
|
156 |
+
optimizer=dict(
|
157 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
158 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
159 |
+
accumulative_counts=accumulative_counts,
|
160 |
+
loss_scale='dynamic',
|
161 |
+
dtype='float16')
|
162 |
+
|
163 |
+
# learning policy
|
164 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
165 |
+
param_scheduler = [
|
166 |
+
dict(
|
167 |
+
type=LinearLR,
|
168 |
+
start_factor=1e-5,
|
169 |
+
by_epoch=True,
|
170 |
+
begin=0,
|
171 |
+
end=warmup_ratio * max_epochs,
|
172 |
+
convert_to_iter_based=True),
|
173 |
+
dict(
|
174 |
+
type=CosineAnnealingLR,
|
175 |
+
eta_min=0.0,
|
176 |
+
by_epoch=True,
|
177 |
+
begin=warmup_ratio * max_epochs,
|
178 |
+
end=max_epochs,
|
179 |
+
convert_to_iter_based=True)
|
180 |
+
]
|
181 |
+
|
182 |
+
# train, val, test setting
|
183 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
184 |
+
|
185 |
+
#######################################################################
|
186 |
+
# PART 5 Runtime #
|
187 |
+
#######################################################################
|
188 |
+
# Log the dialogue periodically during the training process, optional
|
189 |
+
custom_hooks = [
|
190 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
191 |
+
dict(
|
192 |
+
type=EvaluateChatHook,
|
193 |
+
tokenizer=tokenizer,
|
194 |
+
every_n_iters=evaluation_freq,
|
195 |
+
evaluation_inputs=evaluation_inputs,
|
196 |
+
system=SYSTEM,
|
197 |
+
prompt_template=prompt_template)
|
198 |
+
]
|
199 |
+
|
200 |
+
if use_varlen_attn:
|
201 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
202 |
+
|
203 |
+
# configure default hooks
|
204 |
+
default_hooks = dict(
|
205 |
+
# record the time of every iteration.
|
206 |
+
timer=dict(type=IterTimerHook),
|
207 |
+
# print log every 10 iterations.
|
208 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
209 |
+
# enable the parameter scheduler.
|
210 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
211 |
+
# save checkpoint per `save_steps`.
|
212 |
+
checkpoint=dict(
|
213 |
+
type=CheckpointHook,
|
214 |
+
by_epoch=False,
|
215 |
+
interval=save_steps,
|
216 |
+
max_keep_ckpts=save_total_limit),
|
217 |
+
# set sampler seed in distributed evrionment.
|
218 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
219 |
+
)
|
220 |
+
|
221 |
+
# configure environment
|
222 |
+
env_cfg = dict(
|
223 |
+
# whether to enable cudnn benchmark
|
224 |
+
cudnn_benchmark=False,
|
225 |
+
# set multi process parameters
|
226 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
227 |
+
# set distributed parameters
|
228 |
+
dist_cfg=dict(backend='nccl'),
|
229 |
+
)
|
230 |
+
|
231 |
+
# set visualizer
|
232 |
+
visualizer = None
|
233 |
+
|
234 |
+
# set log level
|
235 |
+
log_level = 'INFO'
|
236 |
+
|
237 |
+
# load from which checkpoint
|
238 |
+
load_from = None
|
239 |
+
|
240 |
+
# whether to resume training from the loaded checkpoint
|
241 |
+
resume = False
|
242 |
+
|
243 |
+
# Defaults to use random seed and disable `deterministic`
|
244 |
+
randomness = dict(seed=None, deterministic=False)
|
245 |
+
|
246 |
+
# set log processor
|
247 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_code_alpaca_e3.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import code_alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'HuggingFaceH4/CodeAlpaca_20K'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 100
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.coder
|
54 |
+
evaluation_inputs = [
|
55 |
+
('写一个Python函数,将十六进制颜色代码(如#0066ee)转换为对应的'
|
56 |
+
'红、绿、蓝(RGB)三个颜色分量值,并以元组的形式返回。'),
|
57 |
+
('Write a Python function that takes a hexadecimal color code '
|
58 |
+
'(e.g., #0066ee) as input and converts it into the corresponding '
|
59 |
+
'red, green, and blue (RGB) color component values.')
|
60 |
+
]
|
61 |
+
|
62 |
+
#######################################################################
|
63 |
+
# PART 2 Model & Tokenizer #
|
64 |
+
#######################################################################
|
65 |
+
tokenizer = dict(
|
66 |
+
type=AutoTokenizer.from_pretrained,
|
67 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
68 |
+
trust_remote_code=True,
|
69 |
+
padding_side='right')
|
70 |
+
|
71 |
+
model = dict(
|
72 |
+
type=SupervisedFinetune,
|
73 |
+
use_varlen_attn=use_varlen_attn,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
lora=dict(
|
89 |
+
type=LoraConfig,
|
90 |
+
r=64,
|
91 |
+
lora_alpha=16,
|
92 |
+
lora_dropout=0.1,
|
93 |
+
bias='none',
|
94 |
+
task_type='CAUSAL_LM'))
|
95 |
+
|
96 |
+
#######################################################################
|
97 |
+
# PART 3 Dataset & Dataloader #
|
98 |
+
#######################################################################
|
99 |
+
train_dataset = dict(
|
100 |
+
type=process_hf_dataset,
|
101 |
+
dataset=dict(type=load_dataset, path=data_path),
|
102 |
+
tokenizer=tokenizer,
|
103 |
+
max_length=max_length,
|
104 |
+
dataset_map_fn=code_alpaca_map_fn,
|
105 |
+
template_map_fn=dict(
|
106 |
+
type=template_map_fn_factory, template=prompt_template),
|
107 |
+
remove_unused_columns=True,
|
108 |
+
shuffle_before_pack=True,
|
109 |
+
pack_to_max_length=pack_to_max_length,
|
110 |
+
use_varlen_attn=use_varlen_attn)
|
111 |
+
|
112 |
+
train_dataloader = dict(
|
113 |
+
batch_size=batch_size,
|
114 |
+
num_workers=dataloader_num_workers,
|
115 |
+
dataset=train_dataset,
|
116 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
117 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
118 |
+
|
119 |
+
#######################################################################
|
120 |
+
# PART 4 Scheduler & Optimizer #
|
121 |
+
#######################################################################
|
122 |
+
# optimizer
|
123 |
+
optim_wrapper = dict(
|
124 |
+
type=AmpOptimWrapper,
|
125 |
+
optimizer=dict(
|
126 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
127 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
128 |
+
accumulative_counts=accumulative_counts,
|
129 |
+
loss_scale='dynamic',
|
130 |
+
dtype='float16')
|
131 |
+
|
132 |
+
# learning policy
|
133 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
134 |
+
param_scheduler = [
|
135 |
+
dict(
|
136 |
+
type=LinearLR,
|
137 |
+
start_factor=1e-5,
|
138 |
+
by_epoch=True,
|
139 |
+
begin=0,
|
140 |
+
end=warmup_ratio * max_epochs,
|
141 |
+
convert_to_iter_based=True),
|
142 |
+
dict(
|
143 |
+
type=CosineAnnealingLR,
|
144 |
+
eta_min=0.0,
|
145 |
+
by_epoch=True,
|
146 |
+
begin=warmup_ratio * max_epochs,
|
147 |
+
end=max_epochs,
|
148 |
+
convert_to_iter_based=True)
|
149 |
+
]
|
150 |
+
|
151 |
+
# train, val, test setting
|
152 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
153 |
+
|
154 |
+
#######################################################################
|
155 |
+
# PART 5 Runtime #
|
156 |
+
#######################################################################
|
157 |
+
# Log the dialogue periodically during the training process, optional
|
158 |
+
custom_hooks = [
|
159 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
160 |
+
dict(
|
161 |
+
type=EvaluateChatHook,
|
162 |
+
tokenizer=tokenizer,
|
163 |
+
every_n_iters=evaluation_freq,
|
164 |
+
evaluation_inputs=evaluation_inputs,
|
165 |
+
system=SYSTEM,
|
166 |
+
prompt_template=prompt_template)
|
167 |
+
]
|
168 |
+
|
169 |
+
if use_varlen_attn:
|
170 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
171 |
+
|
172 |
+
# configure default hooks
|
173 |
+
default_hooks = dict(
|
174 |
+
# record the time of every iteration.
|
175 |
+
timer=dict(type=IterTimerHook),
|
176 |
+
# print log every 10 iterations.
|
177 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
178 |
+
# enable the parameter scheduler.
|
179 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
180 |
+
# save checkpoint per `save_steps`.
|
181 |
+
checkpoint=dict(
|
182 |
+
type=CheckpointHook,
|
183 |
+
by_epoch=False,
|
184 |
+
interval=save_steps,
|
185 |
+
max_keep_ckpts=save_total_limit),
|
186 |
+
# set sampler seed in distributed evrionment.
|
187 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
188 |
+
)
|
189 |
+
|
190 |
+
# configure environment
|
191 |
+
env_cfg = dict(
|
192 |
+
# whether to enable cudnn benchmark
|
193 |
+
cudnn_benchmark=False,
|
194 |
+
# set multi process parameters
|
195 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
196 |
+
# set distributed parameters
|
197 |
+
dist_cfg=dict(backend='nccl'),
|
198 |
+
)
|
199 |
+
|
200 |
+
# set visualizer
|
201 |
+
visualizer = None
|
202 |
+
|
203 |
+
# set log level
|
204 |
+
log_level = 'INFO'
|
205 |
+
|
206 |
+
# load from which checkpoint
|
207 |
+
load_from = None
|
208 |
+
|
209 |
+
# whether to resume training from the loaded checkpoint
|
210 |
+
resume = False
|
211 |
+
|
212 |
+
# Defaults to use random seed and disable `deterministic`
|
213 |
+
randomness = dict(seed=None, deterministic=False)
|
214 |
+
|
215 |
+
# set log processor
|
216 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_colorist_e5.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import colors_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'burkelibbey/colors'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 5
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 200
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.colorist
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我一个像天空一样清澈透明的蓝色。', 'Please give me a clear blue like the sky.'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
train_dataset = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=data_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=colors_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=train_dataset,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_lawyer_e3.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import (crime_kg_assitant_map_fn,
|
16 |
+
law_reference_map_fn,
|
17 |
+
template_map_fn_factory)
|
18 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
19 |
+
VarlenAttnArgsToMessageHubHook)
|
20 |
+
from xtuner.engine.runner import TrainLoop
|
21 |
+
from xtuner.model import SupervisedFinetune
|
22 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
23 |
+
|
24 |
+
#######################################################################
|
25 |
+
# PART 1 Settings #
|
26 |
+
#######################################################################
|
27 |
+
# Model
|
28 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
29 |
+
use_varlen_attn = False
|
30 |
+
|
31 |
+
# Data
|
32 |
+
# download data from https://github.com/LiuHC0428/LAW-GPT
|
33 |
+
crime_kg_assitant_path = './data/CrimeKgAssitant清洗后_52k.json'
|
34 |
+
law_reference_data_path = './data/训练数据_带法律依据_92k.json'
|
35 |
+
prompt_template = PROMPT_TEMPLATE.default
|
36 |
+
max_length = 2048
|
37 |
+
pack_to_max_length = True
|
38 |
+
|
39 |
+
# Scheduler & Optimizer
|
40 |
+
batch_size = 1 # per_device
|
41 |
+
accumulative_counts = 16
|
42 |
+
dataloader_num_workers = 0
|
43 |
+
max_epochs = 3
|
44 |
+
optim_type = AdamW
|
45 |
+
lr = 2e-4
|
46 |
+
betas = (0.9, 0.999)
|
47 |
+
weight_decay = 0
|
48 |
+
max_norm = 1 # grad clip
|
49 |
+
warmup_ratio = 0.03
|
50 |
+
|
51 |
+
# Save
|
52 |
+
save_steps = 500
|
53 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
54 |
+
|
55 |
+
# Evaluate the generation performance during the training
|
56 |
+
evaluation_freq = 500
|
57 |
+
SYSTEM = SYSTEM_TEMPLATE.lawyer
|
58 |
+
evaluation_inputs = ['请问离婚需要准备什么材料?', '销售鳄鱼皮包违法吗?']
|
59 |
+
|
60 |
+
#######################################################################
|
61 |
+
# PART 2 Model & Tokenizer #
|
62 |
+
#######################################################################
|
63 |
+
tokenizer = dict(
|
64 |
+
type=AutoTokenizer.from_pretrained,
|
65 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
66 |
+
trust_remote_code=True,
|
67 |
+
padding_side='right')
|
68 |
+
|
69 |
+
model = dict(
|
70 |
+
type=SupervisedFinetune,
|
71 |
+
use_varlen_attn=use_varlen_attn,
|
72 |
+
llm=dict(
|
73 |
+
type=AutoModelForCausalLM.from_pretrained,
|
74 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
75 |
+
trust_remote_code=True,
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
quantization_config=dict(
|
78 |
+
type=BitsAndBytesConfig,
|
79 |
+
load_in_4bit=True,
|
80 |
+
load_in_8bit=False,
|
81 |
+
llm_int8_threshold=6.0,
|
82 |
+
llm_int8_has_fp16_weight=False,
|
83 |
+
bnb_4bit_compute_dtype=torch.float16,
|
84 |
+
bnb_4bit_use_double_quant=True,
|
85 |
+
bnb_4bit_quant_type='nf4')),
|
86 |
+
lora=dict(
|
87 |
+
type=LoraConfig,
|
88 |
+
r=64,
|
89 |
+
lora_alpha=16,
|
90 |
+
lora_dropout=0.1,
|
91 |
+
bias='none',
|
92 |
+
task_type='CAUSAL_LM'))
|
93 |
+
|
94 |
+
#######################################################################
|
95 |
+
# PART 3 Dataset & Dataloader #
|
96 |
+
#######################################################################
|
97 |
+
crime_kg_assitant = dict(
|
98 |
+
type=process_hf_dataset,
|
99 |
+
dataset=dict(
|
100 |
+
type=load_dataset,
|
101 |
+
path='json',
|
102 |
+
data_files=dict(train=crime_kg_assitant_path)),
|
103 |
+
tokenizer=tokenizer,
|
104 |
+
max_length=max_length,
|
105 |
+
dataset_map_fn=crime_kg_assitant_map_fn,
|
106 |
+
template_map_fn=dict(
|
107 |
+
type=template_map_fn_factory, template=prompt_template),
|
108 |
+
remove_unused_columns=True,
|
109 |
+
shuffle_before_pack=True,
|
110 |
+
pack_to_max_length=pack_to_max_length,
|
111 |
+
use_varlen_attn=use_varlen_attn)
|
112 |
+
|
113 |
+
law_reference_data = dict(
|
114 |
+
type=process_hf_dataset,
|
115 |
+
dataset=dict(
|
116 |
+
type=load_dataset,
|
117 |
+
path='json',
|
118 |
+
data_files=dict(train=law_reference_data_path)),
|
119 |
+
tokenizer=tokenizer,
|
120 |
+
max_length=max_length,
|
121 |
+
dataset_map_fn=law_reference_map_fn,
|
122 |
+
template_map_fn=dict(
|
123 |
+
type=template_map_fn_factory, template=prompt_template),
|
124 |
+
remove_unused_columns=True,
|
125 |
+
shuffle_before_pack=True,
|
126 |
+
pack_to_max_length=pack_to_max_length,
|
127 |
+
use_varlen_attn=use_varlen_attn)
|
128 |
+
|
129 |
+
train_dataset = dict(
|
130 |
+
type=ConcatDataset, datasets=[crime_kg_assitant, law_reference_data])
|
131 |
+
|
132 |
+
train_dataloader = dict(
|
133 |
+
batch_size=batch_size,
|
134 |
+
num_workers=dataloader_num_workers,
|
135 |
+
dataset=train_dataset,
|
136 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
137 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
138 |
+
|
139 |
+
#######################################################################
|
140 |
+
# PART 4 Scheduler & Optimizer #
|
141 |
+
#######################################################################
|
142 |
+
# optimizer
|
143 |
+
optim_wrapper = dict(
|
144 |
+
type=AmpOptimWrapper,
|
145 |
+
optimizer=dict(
|
146 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
147 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
148 |
+
accumulative_counts=accumulative_counts,
|
149 |
+
loss_scale='dynamic',
|
150 |
+
dtype='float16')
|
151 |
+
|
152 |
+
# learning policy
|
153 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
154 |
+
param_scheduler = [
|
155 |
+
dict(
|
156 |
+
type=LinearLR,
|
157 |
+
start_factor=1e-5,
|
158 |
+
by_epoch=True,
|
159 |
+
begin=0,
|
160 |
+
end=warmup_ratio * max_epochs,
|
161 |
+
convert_to_iter_based=True),
|
162 |
+
dict(
|
163 |
+
type=CosineAnnealingLR,
|
164 |
+
eta_min=0.0,
|
165 |
+
by_epoch=True,
|
166 |
+
begin=warmup_ratio * max_epochs,
|
167 |
+
end=max_epochs,
|
168 |
+
convert_to_iter_based=True)
|
169 |
+
]
|
170 |
+
|
171 |
+
# train, val, test setting
|
172 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
173 |
+
|
174 |
+
#######################################################################
|
175 |
+
# PART 5 Runtime #
|
176 |
+
#######################################################################
|
177 |
+
# Log the dialogue periodically during the training process, optional
|
178 |
+
custom_hooks = [
|
179 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
180 |
+
dict(
|
181 |
+
type=EvaluateChatHook,
|
182 |
+
tokenizer=tokenizer,
|
183 |
+
every_n_iters=evaluation_freq,
|
184 |
+
evaluation_inputs=evaluation_inputs,
|
185 |
+
system=SYSTEM,
|
186 |
+
prompt_template=prompt_template)
|
187 |
+
]
|
188 |
+
|
189 |
+
if use_varlen_attn:
|
190 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
191 |
+
|
192 |
+
# configure default hooks
|
193 |
+
default_hooks = dict(
|
194 |
+
# record the time of every iteration.
|
195 |
+
timer=dict(type=IterTimerHook),
|
196 |
+
# print log every 10 iterations.
|
197 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
198 |
+
# enable the parameter scheduler.
|
199 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
200 |
+
# save checkpoint per `save_steps`.
|
201 |
+
checkpoint=dict(
|
202 |
+
type=CheckpointHook,
|
203 |
+
by_epoch=False,
|
204 |
+
interval=save_steps,
|
205 |
+
max_keep_ckpts=save_total_limit),
|
206 |
+
# set sampler seed in distributed evrionment.
|
207 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
208 |
+
)
|
209 |
+
|
210 |
+
# configure environment
|
211 |
+
env_cfg = dict(
|
212 |
+
# whether to enable cudnn benchmark
|
213 |
+
cudnn_benchmark=False,
|
214 |
+
# set multi process parameters
|
215 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
216 |
+
# set distributed parameters
|
217 |
+
dist_cfg=dict(backend='nccl'),
|
218 |
+
)
|
219 |
+
|
220 |
+
# set visualizer
|
221 |
+
visualizer = None
|
222 |
+
|
223 |
+
# set log level
|
224 |
+
log_level = 'INFO'
|
225 |
+
|
226 |
+
# load from which checkpoint
|
227 |
+
load_from = None
|
228 |
+
|
229 |
+
# whether to resume training from the loaded checkpoint
|
230 |
+
resume = False
|
231 |
+
|
232 |
+
# Defaults to use random seed and disable `deterministic`
|
233 |
+
randomness = dict(seed=None, deterministic=False)
|
234 |
+
|
235 |
+
# set log processor
|
236 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_oasst1_512_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'timdettmers/openassistant-guanaco'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 512
|
33 |
+
pack_to_max_length = False
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = ''
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
train_dataset = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=data_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=oasst1_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=train_dataset,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_oasst1_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'timdettmers/openassistant-guanaco'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = ''
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
train_dataset = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=data_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=oasst1_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=train_dataset,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_open_platypus_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'garage-bAInd/Open-Platypus'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
train_dataset = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=data_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=alpaca_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=train_dataset,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_base/baichuan2_13b_base_qlora_sql_e3.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import sql_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'b-mc2/sql-create-context'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.sql
|
54 |
+
evaluation_inputs = [
|
55 |
+
('CREATE TABLE station (name VARCHAR, lat VARCHAR, city VARCHAR)\n'
|
56 |
+
'Find the name, latitude, and city of stations with latitude '
|
57 |
+
'above 50.'),
|
58 |
+
('CREATE TABLE weather (zip_code VARCHAR, mean_visibility_miles '
|
59 |
+
'INTEGER)\n找到mean_visibility_miles最大的zip_code。')
|
60 |
+
]
|
61 |
+
|
62 |
+
#######################################################################
|
63 |
+
# PART 2 Model & Tokenizer #
|
64 |
+
#######################################################################
|
65 |
+
tokenizer = dict(
|
66 |
+
type=AutoTokenizer.from_pretrained,
|
67 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
68 |
+
trust_remote_code=True,
|
69 |
+
padding_side='right')
|
70 |
+
|
71 |
+
model = dict(
|
72 |
+
type=SupervisedFinetune,
|
73 |
+
use_varlen_attn=use_varlen_attn,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
lora=dict(
|
89 |
+
type=LoraConfig,
|
90 |
+
r=64,
|
91 |
+
lora_alpha=16,
|
92 |
+
lora_dropout=0.1,
|
93 |
+
bias='none',
|
94 |
+
task_type='CAUSAL_LM'))
|
95 |
+
|
96 |
+
#######################################################################
|
97 |
+
# PART 3 Dataset & Dataloader #
|
98 |
+
#######################################################################
|
99 |
+
train_dataset = dict(
|
100 |
+
type=process_hf_dataset,
|
101 |
+
dataset=dict(type=load_dataset, path=data_path),
|
102 |
+
tokenizer=tokenizer,
|
103 |
+
max_length=max_length,
|
104 |
+
dataset_map_fn=sql_map_fn,
|
105 |
+
template_map_fn=dict(
|
106 |
+
type=template_map_fn_factory, template=prompt_template),
|
107 |
+
remove_unused_columns=True,
|
108 |
+
shuffle_before_pack=True,
|
109 |
+
pack_to_max_length=pack_to_max_length,
|
110 |
+
use_varlen_attn=use_varlen_attn)
|
111 |
+
|
112 |
+
train_dataloader = dict(
|
113 |
+
batch_size=batch_size,
|
114 |
+
num_workers=dataloader_num_workers,
|
115 |
+
dataset=train_dataset,
|
116 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
117 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
118 |
+
|
119 |
+
#######################################################################
|
120 |
+
# PART 4 Scheduler & Optimizer #
|
121 |
+
#######################################################################
|
122 |
+
# optimizer
|
123 |
+
optim_wrapper = dict(
|
124 |
+
type=AmpOptimWrapper,
|
125 |
+
optimizer=dict(
|
126 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
127 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
128 |
+
accumulative_counts=accumulative_counts,
|
129 |
+
loss_scale='dynamic',
|
130 |
+
dtype='float16')
|
131 |
+
|
132 |
+
# learning policy
|
133 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
134 |
+
param_scheduler = [
|
135 |
+
dict(
|
136 |
+
type=LinearLR,
|
137 |
+
start_factor=1e-5,
|
138 |
+
by_epoch=True,
|
139 |
+
begin=0,
|
140 |
+
end=warmup_ratio * max_epochs,
|
141 |
+
convert_to_iter_based=True),
|
142 |
+
dict(
|
143 |
+
type=CosineAnnealingLR,
|
144 |
+
eta_min=0.0,
|
145 |
+
by_epoch=True,
|
146 |
+
begin=warmup_ratio * max_epochs,
|
147 |
+
end=max_epochs,
|
148 |
+
convert_to_iter_based=True)
|
149 |
+
]
|
150 |
+
|
151 |
+
# train, val, test setting
|
152 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
153 |
+
|
154 |
+
#######################################################################
|
155 |
+
# PART 5 Runtime #
|
156 |
+
#######################################################################
|
157 |
+
# Log the dialogue periodically during the training process, optional
|
158 |
+
custom_hooks = [
|
159 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
160 |
+
dict(
|
161 |
+
type=EvaluateChatHook,
|
162 |
+
tokenizer=tokenizer,
|
163 |
+
every_n_iters=evaluation_freq,
|
164 |
+
evaluation_inputs=evaluation_inputs,
|
165 |
+
system=SYSTEM,
|
166 |
+
prompt_template=prompt_template)
|
167 |
+
]
|
168 |
+
|
169 |
+
if use_varlen_attn:
|
170 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
171 |
+
|
172 |
+
# configure default hooks
|
173 |
+
default_hooks = dict(
|
174 |
+
# record the time of every iteration.
|
175 |
+
timer=dict(type=IterTimerHook),
|
176 |
+
# print log every 10 iterations.
|
177 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
178 |
+
# enable the parameter scheduler.
|
179 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
180 |
+
# save checkpoint per `save_steps`.
|
181 |
+
checkpoint=dict(
|
182 |
+
type=CheckpointHook,
|
183 |
+
by_epoch=False,
|
184 |
+
interval=save_steps,
|
185 |
+
max_keep_ckpts=save_total_limit),
|
186 |
+
# set sampler seed in distributed evrionment.
|
187 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
188 |
+
)
|
189 |
+
|
190 |
+
# configure environment
|
191 |
+
env_cfg = dict(
|
192 |
+
# whether to enable cudnn benchmark
|
193 |
+
cudnn_benchmark=False,
|
194 |
+
# set multi process parameters
|
195 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
196 |
+
# set distributed parameters
|
197 |
+
dist_cfg=dict(backend='nccl'),
|
198 |
+
)
|
199 |
+
|
200 |
+
# set visualizer
|
201 |
+
visualizer = None
|
202 |
+
|
203 |
+
# set log level
|
204 |
+
log_level = 'INFO'
|
205 |
+
|
206 |
+
# load from which checkpoint
|
207 |
+
load_from = None
|
208 |
+
|
209 |
+
# whether to resume training from the loaded checkpoint
|
210 |
+
resume = False
|
211 |
+
|
212 |
+
# Defaults to use random seed and disable `deterministic`
|
213 |
+
randomness = dict(seed=None, deterministic=False)
|
214 |
+
|
215 |
+
# set log processor
|
216 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_alpaca_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
alpaca_en = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=alpaca_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=alpaca_en,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_alpaca_enzh_e3.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
|
16 |
+
template_map_fn_factory)
|
17 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
18 |
+
VarlenAttnArgsToMessageHubHook)
|
19 |
+
from xtuner.engine.runner import TrainLoop
|
20 |
+
from xtuner.model import SupervisedFinetune
|
21 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
22 |
+
|
23 |
+
#######################################################################
|
24 |
+
# PART 1 Settings #
|
25 |
+
#######################################################################
|
26 |
+
# Model
|
27 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
28 |
+
use_varlen_attn = False
|
29 |
+
|
30 |
+
# Data
|
31 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
32 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
33 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
34 |
+
max_length = 2048
|
35 |
+
pack_to_max_length = True
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 1 # per_device
|
39 |
+
accumulative_counts = 16
|
40 |
+
dataloader_num_workers = 0
|
41 |
+
max_epochs = 3
|
42 |
+
optim_type = AdamW
|
43 |
+
lr = 2e-4
|
44 |
+
betas = (0.9, 0.999)
|
45 |
+
weight_decay = 0
|
46 |
+
max_norm = 1 # grad clip
|
47 |
+
warmup_ratio = 0.03
|
48 |
+
|
49 |
+
# Save
|
50 |
+
save_steps = 500
|
51 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
52 |
+
|
53 |
+
# Evaluate the generation performance during the training
|
54 |
+
evaluation_freq = 500
|
55 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
56 |
+
evaluation_inputs = [
|
57 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
58 |
+
]
|
59 |
+
|
60 |
+
#######################################################################
|
61 |
+
# PART 2 Model & Tokenizer #
|
62 |
+
#######################################################################
|
63 |
+
tokenizer = dict(
|
64 |
+
type=AutoTokenizer.from_pretrained,
|
65 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
66 |
+
trust_remote_code=True,
|
67 |
+
padding_side='right')
|
68 |
+
|
69 |
+
model = dict(
|
70 |
+
type=SupervisedFinetune,
|
71 |
+
use_varlen_attn=use_varlen_attn,
|
72 |
+
llm=dict(
|
73 |
+
type=AutoModelForCausalLM.from_pretrained,
|
74 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
75 |
+
trust_remote_code=True,
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
quantization_config=dict(
|
78 |
+
type=BitsAndBytesConfig,
|
79 |
+
load_in_4bit=True,
|
80 |
+
load_in_8bit=False,
|
81 |
+
llm_int8_threshold=6.0,
|
82 |
+
llm_int8_has_fp16_weight=False,
|
83 |
+
bnb_4bit_compute_dtype=torch.float16,
|
84 |
+
bnb_4bit_use_double_quant=True,
|
85 |
+
bnb_4bit_quant_type='nf4')),
|
86 |
+
lora=dict(
|
87 |
+
type=LoraConfig,
|
88 |
+
r=64,
|
89 |
+
lora_alpha=16,
|
90 |
+
lora_dropout=0.1,
|
91 |
+
bias='none',
|
92 |
+
task_type='CAUSAL_LM'))
|
93 |
+
|
94 |
+
#######################################################################
|
95 |
+
# PART 3 Dataset & Dataloader #
|
96 |
+
#######################################################################
|
97 |
+
alpaca_en = dict(
|
98 |
+
type=process_hf_dataset,
|
99 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
100 |
+
tokenizer=tokenizer,
|
101 |
+
max_length=max_length,
|
102 |
+
dataset_map_fn=alpaca_map_fn,
|
103 |
+
template_map_fn=dict(
|
104 |
+
type=template_map_fn_factory, template=prompt_template),
|
105 |
+
remove_unused_columns=True,
|
106 |
+
shuffle_before_pack=True,
|
107 |
+
pack_to_max_length=pack_to_max_length,
|
108 |
+
use_varlen_attn=use_varlen_attn)
|
109 |
+
|
110 |
+
alpaca_zh = dict(
|
111 |
+
type=process_hf_dataset,
|
112 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
113 |
+
tokenizer=tokenizer,
|
114 |
+
max_length=max_length,
|
115 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
116 |
+
template_map_fn=dict(
|
117 |
+
type=template_map_fn_factory, template=prompt_template),
|
118 |
+
remove_unused_columns=True,
|
119 |
+
shuffle_before_pack=True,
|
120 |
+
pack_to_max_length=pack_to_max_length,
|
121 |
+
use_varlen_attn=use_varlen_attn)
|
122 |
+
|
123 |
+
train_dataset = dict(type=ConcatDataset, datasets=[alpaca_en, alpaca_zh])
|
124 |
+
|
125 |
+
train_dataloader = dict(
|
126 |
+
batch_size=batch_size,
|
127 |
+
num_workers=dataloader_num_workers,
|
128 |
+
dataset=train_dataset,
|
129 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
130 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
131 |
+
|
132 |
+
#######################################################################
|
133 |
+
# PART 4 Scheduler & Optimizer #
|
134 |
+
#######################################################################
|
135 |
+
# optimizer
|
136 |
+
optim_wrapper = dict(
|
137 |
+
type=AmpOptimWrapper,
|
138 |
+
optimizer=dict(
|
139 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
140 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
141 |
+
accumulative_counts=accumulative_counts,
|
142 |
+
loss_scale='dynamic',
|
143 |
+
dtype='float16')
|
144 |
+
|
145 |
+
# learning policy
|
146 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
147 |
+
param_scheduler = [
|
148 |
+
dict(
|
149 |
+
type=LinearLR,
|
150 |
+
start_factor=1e-5,
|
151 |
+
by_epoch=True,
|
152 |
+
begin=0,
|
153 |
+
end=warmup_ratio * max_epochs,
|
154 |
+
convert_to_iter_based=True),
|
155 |
+
dict(
|
156 |
+
type=CosineAnnealingLR,
|
157 |
+
eta_min=0.0,
|
158 |
+
by_epoch=True,
|
159 |
+
begin=warmup_ratio * max_epochs,
|
160 |
+
end=max_epochs,
|
161 |
+
convert_to_iter_based=True)
|
162 |
+
]
|
163 |
+
|
164 |
+
# train, val, test setting
|
165 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
166 |
+
|
167 |
+
#######################################################################
|
168 |
+
# PART 5 Runtime #
|
169 |
+
#######################################################################
|
170 |
+
# Log the dialogue periodically during the training process, optional
|
171 |
+
custom_hooks = [
|
172 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
173 |
+
dict(
|
174 |
+
type=EvaluateChatHook,
|
175 |
+
tokenizer=tokenizer,
|
176 |
+
every_n_iters=evaluation_freq,
|
177 |
+
evaluation_inputs=evaluation_inputs,
|
178 |
+
system=SYSTEM,
|
179 |
+
prompt_template=prompt_template)
|
180 |
+
]
|
181 |
+
|
182 |
+
if use_varlen_attn:
|
183 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
184 |
+
|
185 |
+
# configure default hooks
|
186 |
+
default_hooks = dict(
|
187 |
+
# record the time of every iteration.
|
188 |
+
timer=dict(type=IterTimerHook),
|
189 |
+
# print log every 10 iterations.
|
190 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
191 |
+
# enable the parameter scheduler.
|
192 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
193 |
+
# save checkpoint per `save_steps`.
|
194 |
+
checkpoint=dict(
|
195 |
+
type=CheckpointHook,
|
196 |
+
by_epoch=False,
|
197 |
+
interval=save_steps,
|
198 |
+
max_keep_ckpts=save_total_limit),
|
199 |
+
# set sampler seed in distributed evrionment.
|
200 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
201 |
+
)
|
202 |
+
|
203 |
+
# configure environment
|
204 |
+
env_cfg = dict(
|
205 |
+
# whether to enable cudnn benchmark
|
206 |
+
cudnn_benchmark=False,
|
207 |
+
# set multi process parameters
|
208 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
209 |
+
# set distributed parameters
|
210 |
+
dist_cfg=dict(backend='nccl'),
|
211 |
+
)
|
212 |
+
|
213 |
+
# set visualizer
|
214 |
+
visualizer = None
|
215 |
+
|
216 |
+
# set log level
|
217 |
+
log_level = 'INFO'
|
218 |
+
|
219 |
+
# load from which checkpoint
|
220 |
+
load_from = None
|
221 |
+
|
222 |
+
# whether to resume training from the loaded checkpoint
|
223 |
+
resume = False
|
224 |
+
|
225 |
+
# Defaults to use random seed and disable `deterministic`
|
226 |
+
randomness = dict(seed=None, deterministic=False)
|
227 |
+
|
228 |
+
# set log processor
|
229 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_alpaca_enzh_oasst1_e3.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
|
16 |
+
oasst1_map_fn, template_map_fn_factory)
|
17 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
18 |
+
VarlenAttnArgsToMessageHubHook)
|
19 |
+
from xtuner.engine.runner import TrainLoop
|
20 |
+
from xtuner.model import SupervisedFinetune
|
21 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
22 |
+
|
23 |
+
#######################################################################
|
24 |
+
# PART 1 Settings #
|
25 |
+
#######################################################################
|
26 |
+
# Model
|
27 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
28 |
+
use_varlen_attn = False
|
29 |
+
|
30 |
+
# Data
|
31 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
32 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
33 |
+
oasst1_path = 'timdettmers/openassistant-guanaco'
|
34 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
35 |
+
max_length = 2048
|
36 |
+
pack_to_max_length = True
|
37 |
+
|
38 |
+
# Scheduler & Optimizer
|
39 |
+
batch_size = 1 # per_device
|
40 |
+
accumulative_counts = 16
|
41 |
+
dataloader_num_workers = 0
|
42 |
+
max_epochs = 3
|
43 |
+
optim_type = AdamW
|
44 |
+
lr = 2e-4
|
45 |
+
betas = (0.9, 0.999)
|
46 |
+
weight_decay = 0
|
47 |
+
max_norm = 1 # grad clip
|
48 |
+
warmup_ratio = 0.03
|
49 |
+
|
50 |
+
# Save
|
51 |
+
save_steps = 500
|
52 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
53 |
+
|
54 |
+
# Evaluate the generation performance during the training
|
55 |
+
evaluation_freq = 500
|
56 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
57 |
+
evaluation_inputs = [
|
58 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
59 |
+
]
|
60 |
+
|
61 |
+
#######################################################################
|
62 |
+
# PART 2 Model & Tokenizer #
|
63 |
+
#######################################################################
|
64 |
+
tokenizer = dict(
|
65 |
+
type=AutoTokenizer.from_pretrained,
|
66 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
67 |
+
trust_remote_code=True,
|
68 |
+
padding_side='right')
|
69 |
+
|
70 |
+
model = dict(
|
71 |
+
type=SupervisedFinetune,
|
72 |
+
use_varlen_attn=use_varlen_attn,
|
73 |
+
llm=dict(
|
74 |
+
type=AutoModelForCausalLM.from_pretrained,
|
75 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
76 |
+
trust_remote_code=True,
|
77 |
+
torch_dtype=torch.float16,
|
78 |
+
quantization_config=dict(
|
79 |
+
type=BitsAndBytesConfig,
|
80 |
+
load_in_4bit=True,
|
81 |
+
load_in_8bit=False,
|
82 |
+
llm_int8_threshold=6.0,
|
83 |
+
llm_int8_has_fp16_weight=False,
|
84 |
+
bnb_4bit_compute_dtype=torch.float16,
|
85 |
+
bnb_4bit_use_double_quant=True,
|
86 |
+
bnb_4bit_quant_type='nf4')),
|
87 |
+
lora=dict(
|
88 |
+
type=LoraConfig,
|
89 |
+
r=64,
|
90 |
+
lora_alpha=16,
|
91 |
+
lora_dropout=0.1,
|
92 |
+
bias='none',
|
93 |
+
task_type='CAUSAL_LM'))
|
94 |
+
|
95 |
+
#######################################################################
|
96 |
+
# PART 3 Dataset & Dataloader #
|
97 |
+
#######################################################################
|
98 |
+
alpaca_en = dict(
|
99 |
+
type=process_hf_dataset,
|
100 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
max_length=max_length,
|
103 |
+
dataset_map_fn=alpaca_map_fn,
|
104 |
+
template_map_fn=dict(
|
105 |
+
type=template_map_fn_factory, template=prompt_template),
|
106 |
+
remove_unused_columns=True,
|
107 |
+
shuffle_before_pack=True,
|
108 |
+
pack_to_max_length=pack_to_max_length,
|
109 |
+
use_varlen_attn=use_varlen_attn)
|
110 |
+
|
111 |
+
alpaca_zh = dict(
|
112 |
+
type=process_hf_dataset,
|
113 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
114 |
+
tokenizer=tokenizer,
|
115 |
+
max_length=max_length,
|
116 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
117 |
+
template_map_fn=dict(
|
118 |
+
type=template_map_fn_factory, template=prompt_template),
|
119 |
+
remove_unused_columns=True,
|
120 |
+
shuffle_before_pack=True,
|
121 |
+
pack_to_max_length=pack_to_max_length,
|
122 |
+
use_varlen_attn=use_varlen_attn)
|
123 |
+
|
124 |
+
oasst1 = dict(
|
125 |
+
type=process_hf_dataset,
|
126 |
+
dataset=dict(type=load_dataset, path=oasst1_path),
|
127 |
+
tokenizer=tokenizer,
|
128 |
+
max_length=max_length,
|
129 |
+
dataset_map_fn=oasst1_map_fn,
|
130 |
+
template_map_fn=dict(
|
131 |
+
type=template_map_fn_factory, template=prompt_template),
|
132 |
+
remove_unused_columns=True,
|
133 |
+
shuffle_before_pack=True,
|
134 |
+
pack_to_max_length=pack_to_max_length,
|
135 |
+
use_varlen_attn=use_varlen_attn)
|
136 |
+
|
137 |
+
train_dataset = dict(
|
138 |
+
type=ConcatDataset, datasets=[alpaca_en, alpaca_zh, oasst1])
|
139 |
+
|
140 |
+
train_dataloader = dict(
|
141 |
+
batch_size=batch_size,
|
142 |
+
num_workers=dataloader_num_workers,
|
143 |
+
dataset=train_dataset,
|
144 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
145 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
146 |
+
|
147 |
+
#######################################################################
|
148 |
+
# PART 4 Scheduler & Optimizer #
|
149 |
+
#######################################################################
|
150 |
+
# optimizer
|
151 |
+
optim_wrapper = dict(
|
152 |
+
type=AmpOptimWrapper,
|
153 |
+
optimizer=dict(
|
154 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
155 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
156 |
+
accumulative_counts=accumulative_counts,
|
157 |
+
loss_scale='dynamic',
|
158 |
+
dtype='float16')
|
159 |
+
|
160 |
+
# learning policy
|
161 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
162 |
+
param_scheduler = [
|
163 |
+
dict(
|
164 |
+
type=LinearLR,
|
165 |
+
start_factor=1e-5,
|
166 |
+
by_epoch=True,
|
167 |
+
begin=0,
|
168 |
+
end=warmup_ratio * max_epochs,
|
169 |
+
convert_to_iter_based=True),
|
170 |
+
dict(
|
171 |
+
type=CosineAnnealingLR,
|
172 |
+
eta_min=0.0,
|
173 |
+
by_epoch=True,
|
174 |
+
begin=warmup_ratio * max_epochs,
|
175 |
+
end=max_epochs,
|
176 |
+
convert_to_iter_based=True)
|
177 |
+
]
|
178 |
+
|
179 |
+
# train, val, test setting
|
180 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
181 |
+
|
182 |
+
#######################################################################
|
183 |
+
# PART 5 Runtime #
|
184 |
+
#######################################################################
|
185 |
+
# Log the dialogue periodically during the training process, optional
|
186 |
+
custom_hooks = [
|
187 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
188 |
+
dict(
|
189 |
+
type=EvaluateChatHook,
|
190 |
+
tokenizer=tokenizer,
|
191 |
+
every_n_iters=evaluation_freq,
|
192 |
+
evaluation_inputs=evaluation_inputs,
|
193 |
+
system=SYSTEM,
|
194 |
+
prompt_template=prompt_template)
|
195 |
+
]
|
196 |
+
|
197 |
+
if use_varlen_attn:
|
198 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
199 |
+
|
200 |
+
# configure default hooks
|
201 |
+
default_hooks = dict(
|
202 |
+
# record the time of every iteration.
|
203 |
+
timer=dict(type=IterTimerHook),
|
204 |
+
# print log every 10 iterations.
|
205 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
206 |
+
# enable the parameter scheduler.
|
207 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
208 |
+
# save checkpoint per `save_steps`.
|
209 |
+
checkpoint=dict(
|
210 |
+
type=CheckpointHook,
|
211 |
+
by_epoch=False,
|
212 |
+
interval=save_steps,
|
213 |
+
max_keep_ckpts=save_total_limit),
|
214 |
+
# set sampler seed in distributed evrionment.
|
215 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
216 |
+
)
|
217 |
+
|
218 |
+
# configure environment
|
219 |
+
env_cfg = dict(
|
220 |
+
# whether to enable cudnn benchmark
|
221 |
+
cudnn_benchmark=False,
|
222 |
+
# set multi process parameters
|
223 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
224 |
+
# set distributed parameters
|
225 |
+
dist_cfg=dict(backend='nccl'),
|
226 |
+
)
|
227 |
+
|
228 |
+
# set visualizer
|
229 |
+
visualizer = None
|
230 |
+
|
231 |
+
# set log level
|
232 |
+
log_level = 'INFO'
|
233 |
+
|
234 |
+
# load from which checkpoint
|
235 |
+
load_from = None
|
236 |
+
|
237 |
+
# whether to resume training from the loaded checkpoint
|
238 |
+
resume = False
|
239 |
+
|
240 |
+
# Defaults to use random seed and disable `deterministic`
|
241 |
+
randomness = dict(seed=None, deterministic=False)
|
242 |
+
|
243 |
+
# set log processor
|
244 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_alpaca_zh_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_zh_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
alpaca_zh = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=alpaca_zh,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_code_alpaca_e3.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import code_alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'HuggingFaceH4/CodeAlpaca_20K'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 100
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.coder
|
54 |
+
evaluation_inputs = [
|
55 |
+
('写一个Python函数,将十六进制颜色代码(如#0066ee)转换为对应的'
|
56 |
+
'红、绿、蓝(RGB)三个颜色分量值,并以元组的形式返回。'),
|
57 |
+
('Write a Python function that takes a hexadecimal color code '
|
58 |
+
'(e.g., #0066ee) as input and converts it into the corresponding '
|
59 |
+
'red, green, and blue (RGB) color component values.')
|
60 |
+
]
|
61 |
+
|
62 |
+
#######################################################################
|
63 |
+
# PART 2 Model & Tokenizer #
|
64 |
+
#######################################################################
|
65 |
+
tokenizer = dict(
|
66 |
+
type=AutoTokenizer.from_pretrained,
|
67 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
68 |
+
trust_remote_code=True,
|
69 |
+
padding_side='right')
|
70 |
+
|
71 |
+
model = dict(
|
72 |
+
type=SupervisedFinetune,
|
73 |
+
use_varlen_attn=use_varlen_attn,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
lora=dict(
|
89 |
+
type=LoraConfig,
|
90 |
+
r=64,
|
91 |
+
lora_alpha=16,
|
92 |
+
lora_dropout=0.1,
|
93 |
+
bias='none',
|
94 |
+
task_type='CAUSAL_LM'))
|
95 |
+
|
96 |
+
#######################################################################
|
97 |
+
# PART 3 Dataset & Dataloader #
|
98 |
+
#######################################################################
|
99 |
+
train_dataset = dict(
|
100 |
+
type=process_hf_dataset,
|
101 |
+
dataset=dict(type=load_dataset, path=data_path),
|
102 |
+
tokenizer=tokenizer,
|
103 |
+
max_length=max_length,
|
104 |
+
dataset_map_fn=code_alpaca_map_fn,
|
105 |
+
template_map_fn=dict(
|
106 |
+
type=template_map_fn_factory, template=prompt_template),
|
107 |
+
remove_unused_columns=True,
|
108 |
+
shuffle_before_pack=True,
|
109 |
+
pack_to_max_length=pack_to_max_length,
|
110 |
+
use_varlen_attn=use_varlen_attn)
|
111 |
+
|
112 |
+
train_dataloader = dict(
|
113 |
+
batch_size=batch_size,
|
114 |
+
num_workers=dataloader_num_workers,
|
115 |
+
dataset=train_dataset,
|
116 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
117 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
118 |
+
|
119 |
+
#######################################################################
|
120 |
+
# PART 4 Scheduler & Optimizer #
|
121 |
+
#######################################################################
|
122 |
+
# optimizer
|
123 |
+
optim_wrapper = dict(
|
124 |
+
type=AmpOptimWrapper,
|
125 |
+
optimizer=dict(
|
126 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
127 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
128 |
+
accumulative_counts=accumulative_counts,
|
129 |
+
loss_scale='dynamic',
|
130 |
+
dtype='float16')
|
131 |
+
|
132 |
+
# learning policy
|
133 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
134 |
+
param_scheduler = [
|
135 |
+
dict(
|
136 |
+
type=LinearLR,
|
137 |
+
start_factor=1e-5,
|
138 |
+
by_epoch=True,
|
139 |
+
begin=0,
|
140 |
+
end=warmup_ratio * max_epochs,
|
141 |
+
convert_to_iter_based=True),
|
142 |
+
dict(
|
143 |
+
type=CosineAnnealingLR,
|
144 |
+
eta_min=0.0,
|
145 |
+
by_epoch=True,
|
146 |
+
begin=warmup_ratio * max_epochs,
|
147 |
+
end=max_epochs,
|
148 |
+
convert_to_iter_based=True)
|
149 |
+
]
|
150 |
+
|
151 |
+
# train, val, test setting
|
152 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
153 |
+
|
154 |
+
#######################################################################
|
155 |
+
# PART 5 Runtime #
|
156 |
+
#######################################################################
|
157 |
+
# Log the dialogue periodically during the training process, optional
|
158 |
+
custom_hooks = [
|
159 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
160 |
+
dict(
|
161 |
+
type=EvaluateChatHook,
|
162 |
+
tokenizer=tokenizer,
|
163 |
+
every_n_iters=evaluation_freq,
|
164 |
+
evaluation_inputs=evaluation_inputs,
|
165 |
+
system=SYSTEM,
|
166 |
+
prompt_template=prompt_template)
|
167 |
+
]
|
168 |
+
|
169 |
+
if use_varlen_attn:
|
170 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
171 |
+
|
172 |
+
# configure default hooks
|
173 |
+
default_hooks = dict(
|
174 |
+
# record the time of every iteration.
|
175 |
+
timer=dict(type=IterTimerHook),
|
176 |
+
# print log every 10 iterations.
|
177 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
178 |
+
# enable the parameter scheduler.
|
179 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
180 |
+
# save checkpoint per `save_steps`.
|
181 |
+
checkpoint=dict(
|
182 |
+
type=CheckpointHook,
|
183 |
+
by_epoch=False,
|
184 |
+
interval=save_steps,
|
185 |
+
max_keep_ckpts=save_total_limit),
|
186 |
+
# set sampler seed in distributed evrionment.
|
187 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
188 |
+
)
|
189 |
+
|
190 |
+
# configure environment
|
191 |
+
env_cfg = dict(
|
192 |
+
# whether to enable cudnn benchmark
|
193 |
+
cudnn_benchmark=False,
|
194 |
+
# set multi process parameters
|
195 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
196 |
+
# set distributed parameters
|
197 |
+
dist_cfg=dict(backend='nccl'),
|
198 |
+
)
|
199 |
+
|
200 |
+
# set visualizer
|
201 |
+
visualizer = None
|
202 |
+
|
203 |
+
# set log level
|
204 |
+
log_level = 'INFO'
|
205 |
+
|
206 |
+
# load from which checkpoint
|
207 |
+
load_from = None
|
208 |
+
|
209 |
+
# whether to resume training from the loaded checkpoint
|
210 |
+
resume = False
|
211 |
+
|
212 |
+
# Defaults to use random seed and disable `deterministic`
|
213 |
+
randomness = dict(seed=None, deterministic=False)
|
214 |
+
|
215 |
+
# set log processor
|
216 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_lawyer_e3.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import (crime_kg_assitant_map_fn,
|
16 |
+
law_reference_map_fn,
|
17 |
+
template_map_fn_factory)
|
18 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
19 |
+
VarlenAttnArgsToMessageHubHook)
|
20 |
+
from xtuner.engine.runner import TrainLoop
|
21 |
+
from xtuner.model import SupervisedFinetune
|
22 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
23 |
+
|
24 |
+
#######################################################################
|
25 |
+
# PART 1 Settings #
|
26 |
+
#######################################################################
|
27 |
+
# Model
|
28 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
29 |
+
use_varlen_attn = False
|
30 |
+
|
31 |
+
# Data
|
32 |
+
# download data from https://github.com/LiuHC0428/LAW-GPT
|
33 |
+
crime_kg_assitant_path = './data/CrimeKgAssitant清洗后_52k.json'
|
34 |
+
law_reference_data_path = './data/训练数据_带法律依据_92k.json'
|
35 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
36 |
+
max_length = 2048
|
37 |
+
pack_to_max_length = True
|
38 |
+
|
39 |
+
# Scheduler & Optimizer
|
40 |
+
batch_size = 1 # per_device
|
41 |
+
accumulative_counts = 16
|
42 |
+
dataloader_num_workers = 0
|
43 |
+
max_epochs = 3
|
44 |
+
optim_type = AdamW
|
45 |
+
lr = 2e-4
|
46 |
+
betas = (0.9, 0.999)
|
47 |
+
weight_decay = 0
|
48 |
+
max_norm = 1 # grad clip
|
49 |
+
warmup_ratio = 0.03
|
50 |
+
|
51 |
+
# Save
|
52 |
+
save_steps = 500
|
53 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
54 |
+
|
55 |
+
# Evaluate the generation performance during the training
|
56 |
+
evaluation_freq = 500
|
57 |
+
SYSTEM = SYSTEM_TEMPLATE.lawyer
|
58 |
+
evaluation_inputs = ['请问离婚需要准备什么材料?', '销售鳄鱼皮包违法吗?']
|
59 |
+
|
60 |
+
#######################################################################
|
61 |
+
# PART 2 Model & Tokenizer #
|
62 |
+
#######################################################################
|
63 |
+
tokenizer = dict(
|
64 |
+
type=AutoTokenizer.from_pretrained,
|
65 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
66 |
+
trust_remote_code=True,
|
67 |
+
padding_side='right')
|
68 |
+
|
69 |
+
model = dict(
|
70 |
+
type=SupervisedFinetune,
|
71 |
+
use_varlen_attn=use_varlen_attn,
|
72 |
+
llm=dict(
|
73 |
+
type=AutoModelForCausalLM.from_pretrained,
|
74 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
75 |
+
trust_remote_code=True,
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
quantization_config=dict(
|
78 |
+
type=BitsAndBytesConfig,
|
79 |
+
load_in_4bit=True,
|
80 |
+
load_in_8bit=False,
|
81 |
+
llm_int8_threshold=6.0,
|
82 |
+
llm_int8_has_fp16_weight=False,
|
83 |
+
bnb_4bit_compute_dtype=torch.float16,
|
84 |
+
bnb_4bit_use_double_quant=True,
|
85 |
+
bnb_4bit_quant_type='nf4')),
|
86 |
+
lora=dict(
|
87 |
+
type=LoraConfig,
|
88 |
+
r=64,
|
89 |
+
lora_alpha=16,
|
90 |
+
lora_dropout=0.1,
|
91 |
+
bias='none',
|
92 |
+
task_type='CAUSAL_LM'))
|
93 |
+
|
94 |
+
#######################################################################
|
95 |
+
# PART 3 Dataset & Dataloader #
|
96 |
+
#######################################################################
|
97 |
+
crime_kg_assitant = dict(
|
98 |
+
type=process_hf_dataset,
|
99 |
+
dataset=dict(
|
100 |
+
type=load_dataset,
|
101 |
+
path='json',
|
102 |
+
data_files=dict(train=crime_kg_assitant_path)),
|
103 |
+
tokenizer=tokenizer,
|
104 |
+
max_length=max_length,
|
105 |
+
dataset_map_fn=crime_kg_assitant_map_fn,
|
106 |
+
template_map_fn=dict(
|
107 |
+
type=template_map_fn_factory, template=prompt_template),
|
108 |
+
remove_unused_columns=True,
|
109 |
+
shuffle_before_pack=True,
|
110 |
+
pack_to_max_length=pack_to_max_length,
|
111 |
+
use_varlen_attn=use_varlen_attn)
|
112 |
+
|
113 |
+
law_reference_data = dict(
|
114 |
+
type=process_hf_dataset,
|
115 |
+
dataset=dict(
|
116 |
+
type=load_dataset,
|
117 |
+
path='json',
|
118 |
+
data_files=dict(train=law_reference_data_path)),
|
119 |
+
tokenizer=tokenizer,
|
120 |
+
max_length=max_length,
|
121 |
+
dataset_map_fn=law_reference_map_fn,
|
122 |
+
template_map_fn=dict(
|
123 |
+
type=template_map_fn_factory, template=prompt_template),
|
124 |
+
remove_unused_columns=True,
|
125 |
+
shuffle_before_pack=True,
|
126 |
+
pack_to_max_length=pack_to_max_length,
|
127 |
+
use_varlen_attn=use_varlen_attn)
|
128 |
+
|
129 |
+
train_dataset = dict(
|
130 |
+
type=ConcatDataset, datasets=[crime_kg_assitant, law_reference_data])
|
131 |
+
|
132 |
+
train_dataloader = dict(
|
133 |
+
batch_size=batch_size,
|
134 |
+
num_workers=dataloader_num_workers,
|
135 |
+
dataset=train_dataset,
|
136 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
137 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
138 |
+
|
139 |
+
#######################################################################
|
140 |
+
# PART 4 Scheduler & Optimizer #
|
141 |
+
#######################################################################
|
142 |
+
# optimizer
|
143 |
+
optim_wrapper = dict(
|
144 |
+
type=AmpOptimWrapper,
|
145 |
+
optimizer=dict(
|
146 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
147 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
148 |
+
accumulative_counts=accumulative_counts,
|
149 |
+
loss_scale='dynamic',
|
150 |
+
dtype='float16')
|
151 |
+
|
152 |
+
# learning policy
|
153 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
154 |
+
param_scheduler = [
|
155 |
+
dict(
|
156 |
+
type=LinearLR,
|
157 |
+
start_factor=1e-5,
|
158 |
+
by_epoch=True,
|
159 |
+
begin=0,
|
160 |
+
end=warmup_ratio * max_epochs,
|
161 |
+
convert_to_iter_based=True),
|
162 |
+
dict(
|
163 |
+
type=CosineAnnealingLR,
|
164 |
+
eta_min=0.0,
|
165 |
+
by_epoch=True,
|
166 |
+
begin=warmup_ratio * max_epochs,
|
167 |
+
end=max_epochs,
|
168 |
+
convert_to_iter_based=True)
|
169 |
+
]
|
170 |
+
|
171 |
+
# train, val, test setting
|
172 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
173 |
+
|
174 |
+
#######################################################################
|
175 |
+
# PART 5 Runtime #
|
176 |
+
#######################################################################
|
177 |
+
# Log the dialogue periodically during the training process, optional
|
178 |
+
custom_hooks = [
|
179 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
180 |
+
dict(
|
181 |
+
type=EvaluateChatHook,
|
182 |
+
tokenizer=tokenizer,
|
183 |
+
every_n_iters=evaluation_freq,
|
184 |
+
evaluation_inputs=evaluation_inputs,
|
185 |
+
system=SYSTEM,
|
186 |
+
prompt_template=prompt_template)
|
187 |
+
]
|
188 |
+
|
189 |
+
if use_varlen_attn:
|
190 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
191 |
+
|
192 |
+
# configure default hooks
|
193 |
+
default_hooks = dict(
|
194 |
+
# record the time of every iteration.
|
195 |
+
timer=dict(type=IterTimerHook),
|
196 |
+
# print log every 10 iterations.
|
197 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
198 |
+
# enable the parameter scheduler.
|
199 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
200 |
+
# save checkpoint per `save_steps`.
|
201 |
+
checkpoint=dict(
|
202 |
+
type=CheckpointHook,
|
203 |
+
by_epoch=False,
|
204 |
+
interval=save_steps,
|
205 |
+
max_keep_ckpts=save_total_limit),
|
206 |
+
# set sampler seed in distributed evrionment.
|
207 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
208 |
+
)
|
209 |
+
|
210 |
+
# configure environment
|
211 |
+
env_cfg = dict(
|
212 |
+
# whether to enable cudnn benchmark
|
213 |
+
cudnn_benchmark=False,
|
214 |
+
# set multi process parameters
|
215 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
216 |
+
# set distributed parameters
|
217 |
+
dist_cfg=dict(backend='nccl'),
|
218 |
+
)
|
219 |
+
|
220 |
+
# set visualizer
|
221 |
+
visualizer = None
|
222 |
+
|
223 |
+
# set log level
|
224 |
+
log_level = 'INFO'
|
225 |
+
|
226 |
+
# load from which checkpoint
|
227 |
+
load_from = None
|
228 |
+
|
229 |
+
# whether to resume training from the loaded checkpoint
|
230 |
+
resume = False
|
231 |
+
|
232 |
+
# Defaults to use random seed and disable `deterministic`
|
233 |
+
randomness = dict(seed=None, deterministic=False)
|
234 |
+
|
235 |
+
# set log processor
|
236 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_oasst1_512_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'timdettmers/openassistant-guanaco'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
32 |
+
max_length = 512
|
33 |
+
pack_to_max_length = False
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = ''
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
train_dataset = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=data_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=oasst1_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=train_dataset,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_oasst1_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'timdettmers/openassistant-guanaco'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = ''
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
train_dataset = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=data_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=oasst1_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=train_dataset,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_13b_chat/baichuan2_13b_chat_qlora_open_platypus_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-13B-Chat'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'garage-bAInd/Open-Platypus'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.baichuan2_chat
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
train_dataset = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=data_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=alpaca_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=train_dataset,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-7B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
alpaca_en = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=alpaca_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=alpaca_en,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_enzh_e3.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
|
16 |
+
template_map_fn_factory)
|
17 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
18 |
+
VarlenAttnArgsToMessageHubHook)
|
19 |
+
from xtuner.engine.runner import TrainLoop
|
20 |
+
from xtuner.model import SupervisedFinetune
|
21 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
22 |
+
|
23 |
+
#######################################################################
|
24 |
+
# PART 1 Settings #
|
25 |
+
#######################################################################
|
26 |
+
# Model
|
27 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-7B-Base'
|
28 |
+
use_varlen_attn = False
|
29 |
+
|
30 |
+
# Data
|
31 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
32 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
33 |
+
prompt_template = PROMPT_TEMPLATE.default
|
34 |
+
max_length = 2048
|
35 |
+
pack_to_max_length = True
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 1 # per_device
|
39 |
+
accumulative_counts = 16
|
40 |
+
dataloader_num_workers = 0
|
41 |
+
max_epochs = 3
|
42 |
+
optim_type = AdamW
|
43 |
+
lr = 2e-4
|
44 |
+
betas = (0.9, 0.999)
|
45 |
+
weight_decay = 0
|
46 |
+
max_norm = 1 # grad clip
|
47 |
+
warmup_ratio = 0.03
|
48 |
+
|
49 |
+
# Save
|
50 |
+
save_steps = 500
|
51 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
52 |
+
|
53 |
+
# Evaluate the generation performance during the training
|
54 |
+
evaluation_freq = 500
|
55 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
56 |
+
evaluation_inputs = [
|
57 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
58 |
+
]
|
59 |
+
|
60 |
+
#######################################################################
|
61 |
+
# PART 2 Model & Tokenizer #
|
62 |
+
#######################################################################
|
63 |
+
tokenizer = dict(
|
64 |
+
type=AutoTokenizer.from_pretrained,
|
65 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
66 |
+
trust_remote_code=True,
|
67 |
+
padding_side='right')
|
68 |
+
|
69 |
+
model = dict(
|
70 |
+
type=SupervisedFinetune,
|
71 |
+
use_varlen_attn=use_varlen_attn,
|
72 |
+
llm=dict(
|
73 |
+
type=AutoModelForCausalLM.from_pretrained,
|
74 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
75 |
+
trust_remote_code=True,
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
quantization_config=dict(
|
78 |
+
type=BitsAndBytesConfig,
|
79 |
+
load_in_4bit=True,
|
80 |
+
load_in_8bit=False,
|
81 |
+
llm_int8_threshold=6.0,
|
82 |
+
llm_int8_has_fp16_weight=False,
|
83 |
+
bnb_4bit_compute_dtype=torch.float16,
|
84 |
+
bnb_4bit_use_double_quant=True,
|
85 |
+
bnb_4bit_quant_type='nf4')),
|
86 |
+
lora=dict(
|
87 |
+
type=LoraConfig,
|
88 |
+
r=64,
|
89 |
+
lora_alpha=16,
|
90 |
+
lora_dropout=0.1,
|
91 |
+
bias='none',
|
92 |
+
task_type='CAUSAL_LM'))
|
93 |
+
|
94 |
+
#######################################################################
|
95 |
+
# PART 3 Dataset & Dataloader #
|
96 |
+
#######################################################################
|
97 |
+
alpaca_en = dict(
|
98 |
+
type=process_hf_dataset,
|
99 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
100 |
+
tokenizer=tokenizer,
|
101 |
+
max_length=max_length,
|
102 |
+
dataset_map_fn=alpaca_map_fn,
|
103 |
+
template_map_fn=dict(
|
104 |
+
type=template_map_fn_factory, template=prompt_template),
|
105 |
+
remove_unused_columns=True,
|
106 |
+
shuffle_before_pack=True,
|
107 |
+
pack_to_max_length=pack_to_max_length,
|
108 |
+
use_varlen_attn=use_varlen_attn)
|
109 |
+
|
110 |
+
alpaca_zh = dict(
|
111 |
+
type=process_hf_dataset,
|
112 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
113 |
+
tokenizer=tokenizer,
|
114 |
+
max_length=max_length,
|
115 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
116 |
+
template_map_fn=dict(
|
117 |
+
type=template_map_fn_factory, template=prompt_template),
|
118 |
+
remove_unused_columns=True,
|
119 |
+
shuffle_before_pack=True,
|
120 |
+
pack_to_max_length=pack_to_max_length,
|
121 |
+
use_varlen_attn=use_varlen_attn)
|
122 |
+
|
123 |
+
train_dataset = dict(type=ConcatDataset, datasets=[alpaca_en, alpaca_zh])
|
124 |
+
|
125 |
+
train_dataloader = dict(
|
126 |
+
batch_size=batch_size,
|
127 |
+
num_workers=dataloader_num_workers,
|
128 |
+
dataset=train_dataset,
|
129 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
130 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
131 |
+
|
132 |
+
#######################################################################
|
133 |
+
# PART 4 Scheduler & Optimizer #
|
134 |
+
#######################################################################
|
135 |
+
# optimizer
|
136 |
+
optim_wrapper = dict(
|
137 |
+
type=AmpOptimWrapper,
|
138 |
+
optimizer=dict(
|
139 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
140 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
141 |
+
accumulative_counts=accumulative_counts,
|
142 |
+
loss_scale='dynamic',
|
143 |
+
dtype='float16')
|
144 |
+
|
145 |
+
# learning policy
|
146 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
147 |
+
param_scheduler = [
|
148 |
+
dict(
|
149 |
+
type=LinearLR,
|
150 |
+
start_factor=1e-5,
|
151 |
+
by_epoch=True,
|
152 |
+
begin=0,
|
153 |
+
end=warmup_ratio * max_epochs,
|
154 |
+
convert_to_iter_based=True),
|
155 |
+
dict(
|
156 |
+
type=CosineAnnealingLR,
|
157 |
+
eta_min=0.0,
|
158 |
+
by_epoch=True,
|
159 |
+
begin=warmup_ratio * max_epochs,
|
160 |
+
end=max_epochs,
|
161 |
+
convert_to_iter_based=True)
|
162 |
+
]
|
163 |
+
|
164 |
+
# train, val, test setting
|
165 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
166 |
+
|
167 |
+
#######################################################################
|
168 |
+
# PART 5 Runtime #
|
169 |
+
#######################################################################
|
170 |
+
# Log the dialogue periodically during the training process, optional
|
171 |
+
custom_hooks = [
|
172 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
173 |
+
dict(
|
174 |
+
type=EvaluateChatHook,
|
175 |
+
tokenizer=tokenizer,
|
176 |
+
every_n_iters=evaluation_freq,
|
177 |
+
evaluation_inputs=evaluation_inputs,
|
178 |
+
system=SYSTEM,
|
179 |
+
prompt_template=prompt_template)
|
180 |
+
]
|
181 |
+
|
182 |
+
if use_varlen_attn:
|
183 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
184 |
+
|
185 |
+
# configure default hooks
|
186 |
+
default_hooks = dict(
|
187 |
+
# record the time of every iteration.
|
188 |
+
timer=dict(type=IterTimerHook),
|
189 |
+
# print log every 10 iterations.
|
190 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
191 |
+
# enable the parameter scheduler.
|
192 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
193 |
+
# save checkpoint per `save_steps`.
|
194 |
+
checkpoint=dict(
|
195 |
+
type=CheckpointHook,
|
196 |
+
by_epoch=False,
|
197 |
+
interval=save_steps,
|
198 |
+
max_keep_ckpts=save_total_limit),
|
199 |
+
# set sampler seed in distributed evrionment.
|
200 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
201 |
+
)
|
202 |
+
|
203 |
+
# configure environment
|
204 |
+
env_cfg = dict(
|
205 |
+
# whether to enable cudnn benchmark
|
206 |
+
cudnn_benchmark=False,
|
207 |
+
# set multi process parameters
|
208 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
209 |
+
# set distributed parameters
|
210 |
+
dist_cfg=dict(backend='nccl'),
|
211 |
+
)
|
212 |
+
|
213 |
+
# set visualizer
|
214 |
+
visualizer = None
|
215 |
+
|
216 |
+
# set log level
|
217 |
+
log_level = 'INFO'
|
218 |
+
|
219 |
+
# load from which checkpoint
|
220 |
+
load_from = None
|
221 |
+
|
222 |
+
# whether to resume training from the loaded checkpoint
|
223 |
+
resume = False
|
224 |
+
|
225 |
+
# Defaults to use random seed and disable `deterministic`
|
226 |
+
randomness = dict(seed=None, deterministic=False)
|
227 |
+
|
228 |
+
# set log processor
|
229 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_enzh_oasst1_e3.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
|
16 |
+
oasst1_map_fn, template_map_fn_factory)
|
17 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
18 |
+
VarlenAttnArgsToMessageHubHook)
|
19 |
+
from xtuner.engine.runner import TrainLoop
|
20 |
+
from xtuner.model import SupervisedFinetune
|
21 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
22 |
+
|
23 |
+
#######################################################################
|
24 |
+
# PART 1 Settings #
|
25 |
+
#######################################################################
|
26 |
+
# Model
|
27 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-7B-Base'
|
28 |
+
use_varlen_attn = False
|
29 |
+
|
30 |
+
# Data
|
31 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
32 |
+
alpaca_en_path = 'tatsu-lab/alpaca'
|
33 |
+
oasst1_path = 'timdettmers/openassistant-guanaco'
|
34 |
+
prompt_template = PROMPT_TEMPLATE.default
|
35 |
+
max_length = 2048
|
36 |
+
pack_to_max_length = True
|
37 |
+
|
38 |
+
# Scheduler & Optimizer
|
39 |
+
batch_size = 1 # per_device
|
40 |
+
accumulative_counts = 16
|
41 |
+
dataloader_num_workers = 0
|
42 |
+
max_epochs = 3
|
43 |
+
optim_type = AdamW
|
44 |
+
lr = 2e-4
|
45 |
+
betas = (0.9, 0.999)
|
46 |
+
weight_decay = 0
|
47 |
+
max_norm = 1 # grad clip
|
48 |
+
warmup_ratio = 0.03
|
49 |
+
|
50 |
+
# Save
|
51 |
+
save_steps = 500
|
52 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
53 |
+
|
54 |
+
# Evaluate the generation performance during the training
|
55 |
+
evaluation_freq = 500
|
56 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
57 |
+
evaluation_inputs = [
|
58 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
59 |
+
]
|
60 |
+
|
61 |
+
#######################################################################
|
62 |
+
# PART 2 Model & Tokenizer #
|
63 |
+
#######################################################################
|
64 |
+
tokenizer = dict(
|
65 |
+
type=AutoTokenizer.from_pretrained,
|
66 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
67 |
+
trust_remote_code=True,
|
68 |
+
padding_side='right')
|
69 |
+
|
70 |
+
model = dict(
|
71 |
+
type=SupervisedFinetune,
|
72 |
+
use_varlen_attn=use_varlen_attn,
|
73 |
+
llm=dict(
|
74 |
+
type=AutoModelForCausalLM.from_pretrained,
|
75 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
76 |
+
trust_remote_code=True,
|
77 |
+
torch_dtype=torch.float16,
|
78 |
+
quantization_config=dict(
|
79 |
+
type=BitsAndBytesConfig,
|
80 |
+
load_in_4bit=True,
|
81 |
+
load_in_8bit=False,
|
82 |
+
llm_int8_threshold=6.0,
|
83 |
+
llm_int8_has_fp16_weight=False,
|
84 |
+
bnb_4bit_compute_dtype=torch.float16,
|
85 |
+
bnb_4bit_use_double_quant=True,
|
86 |
+
bnb_4bit_quant_type='nf4')),
|
87 |
+
lora=dict(
|
88 |
+
type=LoraConfig,
|
89 |
+
r=64,
|
90 |
+
lora_alpha=16,
|
91 |
+
lora_dropout=0.1,
|
92 |
+
bias='none',
|
93 |
+
task_type='CAUSAL_LM'))
|
94 |
+
|
95 |
+
#######################################################################
|
96 |
+
# PART 3 Dataset & Dataloader #
|
97 |
+
#######################################################################
|
98 |
+
alpaca_en = dict(
|
99 |
+
type=process_hf_dataset,
|
100 |
+
dataset=dict(type=load_dataset, path=alpaca_en_path),
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
max_length=max_length,
|
103 |
+
dataset_map_fn=alpaca_map_fn,
|
104 |
+
template_map_fn=dict(
|
105 |
+
type=template_map_fn_factory, template=prompt_template),
|
106 |
+
remove_unused_columns=True,
|
107 |
+
shuffle_before_pack=True,
|
108 |
+
pack_to_max_length=pack_to_max_length,
|
109 |
+
use_varlen_attn=use_varlen_attn)
|
110 |
+
|
111 |
+
alpaca_zh = dict(
|
112 |
+
type=process_hf_dataset,
|
113 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
114 |
+
tokenizer=tokenizer,
|
115 |
+
max_length=max_length,
|
116 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
117 |
+
template_map_fn=dict(
|
118 |
+
type=template_map_fn_factory, template=prompt_template),
|
119 |
+
remove_unused_columns=True,
|
120 |
+
shuffle_before_pack=True,
|
121 |
+
pack_to_max_length=pack_to_max_length,
|
122 |
+
use_varlen_attn=use_varlen_attn)
|
123 |
+
|
124 |
+
oasst1 = dict(
|
125 |
+
type=process_hf_dataset,
|
126 |
+
dataset=dict(type=load_dataset, path=oasst1_path),
|
127 |
+
tokenizer=tokenizer,
|
128 |
+
max_length=max_length,
|
129 |
+
dataset_map_fn=oasst1_map_fn,
|
130 |
+
template_map_fn=dict(
|
131 |
+
type=template_map_fn_factory, template=prompt_template),
|
132 |
+
remove_unused_columns=True,
|
133 |
+
shuffle_before_pack=True,
|
134 |
+
pack_to_max_length=pack_to_max_length,
|
135 |
+
use_varlen_attn=use_varlen_attn)
|
136 |
+
|
137 |
+
train_dataset = dict(
|
138 |
+
type=ConcatDataset, datasets=[alpaca_en, alpaca_zh, oasst1])
|
139 |
+
|
140 |
+
train_dataloader = dict(
|
141 |
+
batch_size=batch_size,
|
142 |
+
num_workers=dataloader_num_workers,
|
143 |
+
dataset=train_dataset,
|
144 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
145 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
146 |
+
|
147 |
+
#######################################################################
|
148 |
+
# PART 4 Scheduler & Optimizer #
|
149 |
+
#######################################################################
|
150 |
+
# optimizer
|
151 |
+
optim_wrapper = dict(
|
152 |
+
type=AmpOptimWrapper,
|
153 |
+
optimizer=dict(
|
154 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
155 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
156 |
+
accumulative_counts=accumulative_counts,
|
157 |
+
loss_scale='dynamic',
|
158 |
+
dtype='float16')
|
159 |
+
|
160 |
+
# learning policy
|
161 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
162 |
+
param_scheduler = [
|
163 |
+
dict(
|
164 |
+
type=LinearLR,
|
165 |
+
start_factor=1e-5,
|
166 |
+
by_epoch=True,
|
167 |
+
begin=0,
|
168 |
+
end=warmup_ratio * max_epochs,
|
169 |
+
convert_to_iter_based=True),
|
170 |
+
dict(
|
171 |
+
type=CosineAnnealingLR,
|
172 |
+
eta_min=0.0,
|
173 |
+
by_epoch=True,
|
174 |
+
begin=warmup_ratio * max_epochs,
|
175 |
+
end=max_epochs,
|
176 |
+
convert_to_iter_based=True)
|
177 |
+
]
|
178 |
+
|
179 |
+
# train, val, test setting
|
180 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
181 |
+
|
182 |
+
#######################################################################
|
183 |
+
# PART 5 Runtime #
|
184 |
+
#######################################################################
|
185 |
+
# Log the dialogue periodically during the training process, optional
|
186 |
+
custom_hooks = [
|
187 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
188 |
+
dict(
|
189 |
+
type=EvaluateChatHook,
|
190 |
+
tokenizer=tokenizer,
|
191 |
+
every_n_iters=evaluation_freq,
|
192 |
+
evaluation_inputs=evaluation_inputs,
|
193 |
+
system=SYSTEM,
|
194 |
+
prompt_template=prompt_template)
|
195 |
+
]
|
196 |
+
|
197 |
+
if use_varlen_attn:
|
198 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
199 |
+
|
200 |
+
# configure default hooks
|
201 |
+
default_hooks = dict(
|
202 |
+
# record the time of every iteration.
|
203 |
+
timer=dict(type=IterTimerHook),
|
204 |
+
# print log every 10 iterations.
|
205 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
206 |
+
# enable the parameter scheduler.
|
207 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
208 |
+
# save checkpoint per `save_steps`.
|
209 |
+
checkpoint=dict(
|
210 |
+
type=CheckpointHook,
|
211 |
+
by_epoch=False,
|
212 |
+
interval=save_steps,
|
213 |
+
max_keep_ckpts=save_total_limit),
|
214 |
+
# set sampler seed in distributed evrionment.
|
215 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
216 |
+
)
|
217 |
+
|
218 |
+
# configure environment
|
219 |
+
env_cfg = dict(
|
220 |
+
# whether to enable cudnn benchmark
|
221 |
+
cudnn_benchmark=False,
|
222 |
+
# set multi process parameters
|
223 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
224 |
+
# set distributed parameters
|
225 |
+
dist_cfg=dict(backend='nccl'),
|
226 |
+
)
|
227 |
+
|
228 |
+
# set visualizer
|
229 |
+
visualizer = None
|
230 |
+
|
231 |
+
# set log level
|
232 |
+
log_level = 'INFO'
|
233 |
+
|
234 |
+
# load from which checkpoint
|
235 |
+
load_from = None
|
236 |
+
|
237 |
+
# whether to resume training from the loaded checkpoint
|
238 |
+
resume = False
|
239 |
+
|
240 |
+
# Defaults to use random seed and disable `deterministic`
|
241 |
+
randomness = dict(seed=None, deterministic=False)
|
242 |
+
|
243 |
+
# set log processor
|
244 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_zh_e3.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import alpaca_zh_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-7B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
alpaca_zh_path = 'silk-road/alpaca-data-gpt4-chinese'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 500
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
54 |
+
evaluation_inputs = [
|
55 |
+
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
56 |
+
]
|
57 |
+
|
58 |
+
#######################################################################
|
59 |
+
# PART 2 Model & Tokenizer #
|
60 |
+
#######################################################################
|
61 |
+
tokenizer = dict(
|
62 |
+
type=AutoTokenizer.from_pretrained,
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
trust_remote_code=True,
|
65 |
+
padding_side='right')
|
66 |
+
|
67 |
+
model = dict(
|
68 |
+
type=SupervisedFinetune,
|
69 |
+
use_varlen_attn=use_varlen_attn,
|
70 |
+
llm=dict(
|
71 |
+
type=AutoModelForCausalLM.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
quantization_config=dict(
|
76 |
+
type=BitsAndBytesConfig,
|
77 |
+
load_in_4bit=True,
|
78 |
+
load_in_8bit=False,
|
79 |
+
llm_int8_threshold=6.0,
|
80 |
+
llm_int8_has_fp16_weight=False,
|
81 |
+
bnb_4bit_compute_dtype=torch.float16,
|
82 |
+
bnb_4bit_use_double_quant=True,
|
83 |
+
bnb_4bit_quant_type='nf4')),
|
84 |
+
lora=dict(
|
85 |
+
type=LoraConfig,
|
86 |
+
r=64,
|
87 |
+
lora_alpha=16,
|
88 |
+
lora_dropout=0.1,
|
89 |
+
bias='none',
|
90 |
+
task_type='CAUSAL_LM'))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
alpaca_zh = dict(
|
96 |
+
type=process_hf_dataset,
|
97 |
+
dataset=dict(type=load_dataset, path=alpaca_zh_path),
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
max_length=max_length,
|
100 |
+
dataset_map_fn=alpaca_zh_map_fn,
|
101 |
+
template_map_fn=dict(
|
102 |
+
type=template_map_fn_factory, template=prompt_template),
|
103 |
+
remove_unused_columns=True,
|
104 |
+
shuffle_before_pack=True,
|
105 |
+
pack_to_max_length=pack_to_max_length,
|
106 |
+
use_varlen_attn=use_varlen_attn)
|
107 |
+
|
108 |
+
train_dataloader = dict(
|
109 |
+
batch_size=batch_size,
|
110 |
+
num_workers=dataloader_num_workers,
|
111 |
+
dataset=alpaca_zh,
|
112 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
113 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
114 |
+
|
115 |
+
#######################################################################
|
116 |
+
# PART 4 Scheduler & Optimizer #
|
117 |
+
#######################################################################
|
118 |
+
# optimizer
|
119 |
+
optim_wrapper = dict(
|
120 |
+
type=AmpOptimWrapper,
|
121 |
+
optimizer=dict(
|
122 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
123 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
124 |
+
accumulative_counts=accumulative_counts,
|
125 |
+
loss_scale='dynamic',
|
126 |
+
dtype='float16')
|
127 |
+
|
128 |
+
# learning policy
|
129 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
130 |
+
param_scheduler = [
|
131 |
+
dict(
|
132 |
+
type=LinearLR,
|
133 |
+
start_factor=1e-5,
|
134 |
+
by_epoch=True,
|
135 |
+
begin=0,
|
136 |
+
end=warmup_ratio * max_epochs,
|
137 |
+
convert_to_iter_based=True),
|
138 |
+
dict(
|
139 |
+
type=CosineAnnealingLR,
|
140 |
+
eta_min=0.0,
|
141 |
+
by_epoch=True,
|
142 |
+
begin=warmup_ratio * max_epochs,
|
143 |
+
end=max_epochs,
|
144 |
+
convert_to_iter_based=True)
|
145 |
+
]
|
146 |
+
|
147 |
+
# train, val, test setting
|
148 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 5 Runtime #
|
152 |
+
#######################################################################
|
153 |
+
# Log the dialogue periodically during the training process, optional
|
154 |
+
custom_hooks = [
|
155 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
156 |
+
dict(
|
157 |
+
type=EvaluateChatHook,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
system=SYSTEM,
|
162 |
+
prompt_template=prompt_template)
|
163 |
+
]
|
164 |
+
|
165 |
+
if use_varlen_attn:
|
166 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
167 |
+
|
168 |
+
# configure default hooks
|
169 |
+
default_hooks = dict(
|
170 |
+
# record the time of every iteration.
|
171 |
+
timer=dict(type=IterTimerHook),
|
172 |
+
# print log every 10 iterations.
|
173 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
174 |
+
# enable the parameter scheduler.
|
175 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
176 |
+
# save checkpoint per `save_steps`.
|
177 |
+
checkpoint=dict(
|
178 |
+
type=CheckpointHook,
|
179 |
+
by_epoch=False,
|
180 |
+
interval=save_steps,
|
181 |
+
max_keep_ckpts=save_total_limit),
|
182 |
+
# set sampler seed in distributed evrionment.
|
183 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
184 |
+
)
|
185 |
+
|
186 |
+
# configure environment
|
187 |
+
env_cfg = dict(
|
188 |
+
# whether to enable cudnn benchmark
|
189 |
+
cudnn_benchmark=False,
|
190 |
+
# set multi process parameters
|
191 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
192 |
+
# set distributed parameters
|
193 |
+
dist_cfg=dict(backend='nccl'),
|
194 |
+
)
|
195 |
+
|
196 |
+
# set visualizer
|
197 |
+
visualizer = None
|
198 |
+
|
199 |
+
# set log level
|
200 |
+
log_level = 'INFO'
|
201 |
+
|
202 |
+
# load from which checkpoint
|
203 |
+
load_from = None
|
204 |
+
|
205 |
+
# whether to resume training from the loaded checkpoint
|
206 |
+
resume = False
|
207 |
+
|
208 |
+
# Defaults to use random seed and disable `deterministic`
|
209 |
+
randomness = dict(seed=None, deterministic=False)
|
210 |
+
|
211 |
+
# set log processor
|
212 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_arxiv_gentitle_e3.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import arxiv_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-7B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
# 1. Download data from https://kaggle.com/datasets/Cornell-University/arxiv
|
31 |
+
# 2. Process data by `xtuner preprocess arxiv ${DOWNLOADED_DATA} ./data/arxiv_data.json [optional arguments]` # noqa: E501
|
32 |
+
data_path = './data/arxiv_data.json'
|
33 |
+
prompt_template = PROMPT_TEMPLATE.default
|
34 |
+
max_length = 2048
|
35 |
+
pack_to_max_length = True
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 1 # per_device
|
39 |
+
accumulative_counts = 16
|
40 |
+
dataloader_num_workers = 0
|
41 |
+
max_epochs = 3
|
42 |
+
optim_type = AdamW
|
43 |
+
lr = 2e-4
|
44 |
+
betas = (0.9, 0.999)
|
45 |
+
weight_decay = 0
|
46 |
+
max_norm = 1 # grad clip
|
47 |
+
warmup_ratio = 0.03
|
48 |
+
|
49 |
+
# Save
|
50 |
+
save_steps = 500
|
51 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
52 |
+
|
53 |
+
# Evaluate the generation performance during the training
|
54 |
+
evaluation_freq = 500
|
55 |
+
SYSTEM = SYSTEM_TEMPLATE.arxiv_gentile
|
56 |
+
evaluation_inputs = [
|
57 |
+
('We present InternLM, a multilingual foundational language '
|
58 |
+
'model with 104B parameters. InternLM is pre-trained on a large '
|
59 |
+
'corpora with 1.6T tokens with a multi-phase progressive '
|
60 |
+
'process, and then fine-tuned to align with human preferences. '
|
61 |
+
'We also developed a training system called Uniscale-LLM for '
|
62 |
+
'efficient large language model training. The evaluation on a '
|
63 |
+
'number of benchmarks shows that InternLM achieves '
|
64 |
+
'state-of-the-art performance in multiple aspects, including '
|
65 |
+
'knowledge understanding, reading comprehension, mathematics, '
|
66 |
+
'and coding. With such well-rounded capabilities, InternLM '
|
67 |
+
'achieves outstanding performances on comprehensive exams, '
|
68 |
+
'including MMLU, AGIEval, C-Eval and GAOKAO-Bench, without '
|
69 |
+
'resorting to external tools. On these benchmarks, InternLM '
|
70 |
+
'not only significantly outperforms open-source models, but '
|
71 |
+
'also obtains superior performance compared to ChatGPT. Also, '
|
72 |
+
'InternLM demonstrates excellent capability of understanding '
|
73 |
+
'Chinese language and Chinese culture, which makes it a '
|
74 |
+
'suitable foundation model to support Chinese-oriented language '
|
75 |
+
'applications. This manuscript gives a detailed study of '
|
76 |
+
'our results, with benchmarks and examples across a diverse '
|
77 |
+
'set of knowledge domains and tasks.'),
|
78 |
+
('In this work, we develop and release Llama 2, a collection of '
|
79 |
+
'pretrained and fine-tuned large language models (LLMs) ranging '
|
80 |
+
'in scale from 7 billion to 70 billion parameters.\nOur '
|
81 |
+
'fine-tuned LLMs, called LLAMA 2-CHAT, are optimized for '
|
82 |
+
'dialogue use cases. Our models outperform open-source chat '
|
83 |
+
'models on most benchmarks we tested, and based on our human '
|
84 |
+
'evaluations for helpfulness and safety, may be a suitable '
|
85 |
+
'substitute for closedsource models. We provide a detailed '
|
86 |
+
'description of our approach to fine-tuning and safety '
|
87 |
+
'improvements of LLAMA 2-CHAT in order to enable the community '
|
88 |
+
'to build on our work and contribute to the responsible '
|
89 |
+
'development of LLMs.')
|
90 |
+
]
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 2 Model & Tokenizer #
|
94 |
+
#######################################################################
|
95 |
+
tokenizer = dict(
|
96 |
+
type=AutoTokenizer.from_pretrained,
|
97 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
98 |
+
trust_remote_code=True,
|
99 |
+
padding_side='right')
|
100 |
+
|
101 |
+
model = dict(
|
102 |
+
type=SupervisedFinetune,
|
103 |
+
use_varlen_attn=use_varlen_attn,
|
104 |
+
llm=dict(
|
105 |
+
type=AutoModelForCausalLM.from_pretrained,
|
106 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
107 |
+
trust_remote_code=True,
|
108 |
+
torch_dtype=torch.float16,
|
109 |
+
quantization_config=dict(
|
110 |
+
type=BitsAndBytesConfig,
|
111 |
+
load_in_4bit=True,
|
112 |
+
load_in_8bit=False,
|
113 |
+
llm_int8_threshold=6.0,
|
114 |
+
llm_int8_has_fp16_weight=False,
|
115 |
+
bnb_4bit_compute_dtype=torch.float16,
|
116 |
+
bnb_4bit_use_double_quant=True,
|
117 |
+
bnb_4bit_quant_type='nf4')),
|
118 |
+
lora=dict(
|
119 |
+
type=LoraConfig,
|
120 |
+
r=64,
|
121 |
+
lora_alpha=16,
|
122 |
+
lora_dropout=0.1,
|
123 |
+
bias='none',
|
124 |
+
task_type='CAUSAL_LM'))
|
125 |
+
|
126 |
+
#######################################################################
|
127 |
+
# PART 3 Dataset & Dataloader #
|
128 |
+
#######################################################################
|
129 |
+
train_dataset = dict(
|
130 |
+
type=process_hf_dataset,
|
131 |
+
dataset=dict(
|
132 |
+
type=load_dataset, path='json', data_files=dict(train=data_path)),
|
133 |
+
tokenizer=tokenizer,
|
134 |
+
max_length=max_length,
|
135 |
+
dataset_map_fn=arxiv_map_fn,
|
136 |
+
template_map_fn=dict(
|
137 |
+
type=template_map_fn_factory, template=prompt_template),
|
138 |
+
remove_unused_columns=True,
|
139 |
+
shuffle_before_pack=True,
|
140 |
+
pack_to_max_length=pack_to_max_length,
|
141 |
+
use_varlen_attn=use_varlen_attn)
|
142 |
+
|
143 |
+
train_dataloader = dict(
|
144 |
+
batch_size=batch_size,
|
145 |
+
num_workers=dataloader_num_workers,
|
146 |
+
dataset=train_dataset,
|
147 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
148 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
149 |
+
|
150 |
+
#######################################################################
|
151 |
+
# PART 4 Scheduler & Optimizer #
|
152 |
+
#######################################################################
|
153 |
+
# optimizer
|
154 |
+
optim_wrapper = dict(
|
155 |
+
type=AmpOptimWrapper,
|
156 |
+
optimizer=dict(
|
157 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
158 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
159 |
+
accumulative_counts=accumulative_counts,
|
160 |
+
loss_scale='dynamic',
|
161 |
+
dtype='float16')
|
162 |
+
|
163 |
+
# learning policy
|
164 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
165 |
+
param_scheduler = [
|
166 |
+
dict(
|
167 |
+
type=LinearLR,
|
168 |
+
start_factor=1e-5,
|
169 |
+
by_epoch=True,
|
170 |
+
begin=0,
|
171 |
+
end=warmup_ratio * max_epochs,
|
172 |
+
convert_to_iter_based=True),
|
173 |
+
dict(
|
174 |
+
type=CosineAnnealingLR,
|
175 |
+
eta_min=0.0,
|
176 |
+
by_epoch=True,
|
177 |
+
begin=warmup_ratio * max_epochs,
|
178 |
+
end=max_epochs,
|
179 |
+
convert_to_iter_based=True)
|
180 |
+
]
|
181 |
+
|
182 |
+
# train, val, test setting
|
183 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
184 |
+
|
185 |
+
#######################################################################
|
186 |
+
# PART 5 Runtime #
|
187 |
+
#######################################################################
|
188 |
+
# Log the dialogue periodically during the training process, optional
|
189 |
+
custom_hooks = [
|
190 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
191 |
+
dict(
|
192 |
+
type=EvaluateChatHook,
|
193 |
+
tokenizer=tokenizer,
|
194 |
+
every_n_iters=evaluation_freq,
|
195 |
+
evaluation_inputs=evaluation_inputs,
|
196 |
+
system=SYSTEM,
|
197 |
+
prompt_template=prompt_template)
|
198 |
+
]
|
199 |
+
|
200 |
+
if use_varlen_attn:
|
201 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
202 |
+
|
203 |
+
# configure default hooks
|
204 |
+
default_hooks = dict(
|
205 |
+
# record the time of every iteration.
|
206 |
+
timer=dict(type=IterTimerHook),
|
207 |
+
# print log every 10 iterations.
|
208 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
209 |
+
# enable the parameter scheduler.
|
210 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
211 |
+
# save checkpoint per `save_steps`.
|
212 |
+
checkpoint=dict(
|
213 |
+
type=CheckpointHook,
|
214 |
+
by_epoch=False,
|
215 |
+
interval=save_steps,
|
216 |
+
max_keep_ckpts=save_total_limit),
|
217 |
+
# set sampler seed in distributed evrionment.
|
218 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
219 |
+
)
|
220 |
+
|
221 |
+
# configure environment
|
222 |
+
env_cfg = dict(
|
223 |
+
# whether to enable cudnn benchmark
|
224 |
+
cudnn_benchmark=False,
|
225 |
+
# set multi process parameters
|
226 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
227 |
+
# set distributed parameters
|
228 |
+
dist_cfg=dict(backend='nccl'),
|
229 |
+
)
|
230 |
+
|
231 |
+
# set visualizer
|
232 |
+
visualizer = None
|
233 |
+
|
234 |
+
# set log level
|
235 |
+
log_level = 'INFO'
|
236 |
+
|
237 |
+
# load from which checkpoint
|
238 |
+
load_from = None
|
239 |
+
|
240 |
+
# whether to resume training from the loaded checkpoint
|
241 |
+
resume = False
|
242 |
+
|
243 |
+
# Defaults to use random seed and disable `deterministic`
|
244 |
+
randomness = dict(seed=None, deterministic=False)
|
245 |
+
|
246 |
+
# set log processor
|
247 |
+
log_processor = dict(by_epoch=False)
|
xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_code_alpaca_e3.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
8 |
+
from peft import LoraConfig
|
9 |
+
from torch.optim import AdamW
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_hf_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import code_alpaca_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
17 |
+
VarlenAttnArgsToMessageHubHook)
|
18 |
+
from xtuner.engine.runner import TrainLoop
|
19 |
+
from xtuner.model import SupervisedFinetune
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
21 |
+
|
22 |
+
#######################################################################
|
23 |
+
# PART 1 Settings #
|
24 |
+
#######################################################################
|
25 |
+
# Model
|
26 |
+
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-7B-Base'
|
27 |
+
use_varlen_attn = False
|
28 |
+
|
29 |
+
# Data
|
30 |
+
data_path = 'HuggingFaceH4/CodeAlpaca_20K'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.default
|
32 |
+
max_length = 2048
|
33 |
+
pack_to_max_length = True
|
34 |
+
|
35 |
+
# Scheduler & Optimizer
|
36 |
+
batch_size = 1 # per_device
|
37 |
+
accumulative_counts = 16
|
38 |
+
dataloader_num_workers = 0
|
39 |
+
max_epochs = 3
|
40 |
+
optim_type = AdamW
|
41 |
+
lr = 2e-4
|
42 |
+
betas = (0.9, 0.999)
|
43 |
+
weight_decay = 0
|
44 |
+
max_norm = 1 # grad clip
|
45 |
+
warmup_ratio = 0.03
|
46 |
+
|
47 |
+
# Save
|
48 |
+
save_steps = 500
|
49 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
50 |
+
|
51 |
+
# Evaluate the generation performance during the training
|
52 |
+
evaluation_freq = 100
|
53 |
+
SYSTEM = SYSTEM_TEMPLATE.coder
|
54 |
+
evaluation_inputs = [
|
55 |
+
('写一个Python函数,将十六进制颜色代码(如#0066ee)转换为对应的'
|
56 |
+
'红、绿、蓝(RGB)三个颜色分量值,并以元组的形式返回。'),
|
57 |
+
('Write a Python function that takes a hexadecimal color code '
|
58 |
+
'(e.g., #0066ee) as input and converts it into the corresponding '
|
59 |
+
'red, green, and blue (RGB) color component values.')
|
60 |
+
]
|
61 |
+
|
62 |
+
#######################################################################
|
63 |
+
# PART 2 Model & Tokenizer #
|
64 |
+
#######################################################################
|
65 |
+
tokenizer = dict(
|
66 |
+
type=AutoTokenizer.from_pretrained,
|
67 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
68 |
+
trust_remote_code=True,
|
69 |
+
padding_side='right')
|
70 |
+
|
71 |
+
model = dict(
|
72 |
+
type=SupervisedFinetune,
|
73 |
+
use_varlen_attn=use_varlen_attn,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
lora=dict(
|
89 |
+
type=LoraConfig,
|
90 |
+
r=64,
|
91 |
+
lora_alpha=16,
|
92 |
+
lora_dropout=0.1,
|
93 |
+
bias='none',
|
94 |
+
task_type='CAUSAL_LM'))
|
95 |
+
|
96 |
+
#######################################################################
|
97 |
+
# PART 3 Dataset & Dataloader #
|
98 |
+
#######################################################################
|
99 |
+
train_dataset = dict(
|
100 |
+
type=process_hf_dataset,
|
101 |
+
dataset=dict(type=load_dataset, path=data_path),
|
102 |
+
tokenizer=tokenizer,
|
103 |
+
max_length=max_length,
|
104 |
+
dataset_map_fn=code_alpaca_map_fn,
|
105 |
+
template_map_fn=dict(
|
106 |
+
type=template_map_fn_factory, template=prompt_template),
|
107 |
+
remove_unused_columns=True,
|
108 |
+
shuffle_before_pack=True,
|
109 |
+
pack_to_max_length=pack_to_max_length,
|
110 |
+
use_varlen_attn=use_varlen_attn)
|
111 |
+
|
112 |
+
train_dataloader = dict(
|
113 |
+
batch_size=batch_size,
|
114 |
+
num_workers=dataloader_num_workers,
|
115 |
+
dataset=train_dataset,
|
116 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
117 |
+
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
118 |
+
|
119 |
+
#######################################################################
|
120 |
+
# PART 4 Scheduler & Optimizer #
|
121 |
+
#######################################################################
|
122 |
+
# optimizer
|
123 |
+
optim_wrapper = dict(
|
124 |
+
type=AmpOptimWrapper,
|
125 |
+
optimizer=dict(
|
126 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
127 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
128 |
+
accumulative_counts=accumulative_counts,
|
129 |
+
loss_scale='dynamic',
|
130 |
+
dtype='float16')
|
131 |
+
|
132 |
+
# learning policy
|
133 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
134 |
+
param_scheduler = [
|
135 |
+
dict(
|
136 |
+
type=LinearLR,
|
137 |
+
start_factor=1e-5,
|
138 |
+
by_epoch=True,
|
139 |
+
begin=0,
|
140 |
+
end=warmup_ratio * max_epochs,
|
141 |
+
convert_to_iter_based=True),
|
142 |
+
dict(
|
143 |
+
type=CosineAnnealingLR,
|
144 |
+
eta_min=0.0,
|
145 |
+
by_epoch=True,
|
146 |
+
begin=warmup_ratio * max_epochs,
|
147 |
+
end=max_epochs,
|
148 |
+
convert_to_iter_based=True)
|
149 |
+
]
|
150 |
+
|
151 |
+
# train, val, test setting
|
152 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
153 |
+
|
154 |
+
#######################################################################
|
155 |
+
# PART 5 Runtime #
|
156 |
+
#######################################################################
|
157 |
+
# Log the dialogue periodically during the training process, optional
|
158 |
+
custom_hooks = [
|
159 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
160 |
+
dict(
|
161 |
+
type=EvaluateChatHook,
|
162 |
+
tokenizer=tokenizer,
|
163 |
+
every_n_iters=evaluation_freq,
|
164 |
+
evaluation_inputs=evaluation_inputs,
|
165 |
+
system=SYSTEM,
|
166 |
+
prompt_template=prompt_template)
|
167 |
+
]
|
168 |
+
|
169 |
+
if use_varlen_attn:
|
170 |
+
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
171 |
+
|
172 |
+
# configure default hooks
|
173 |
+
default_hooks = dict(
|
174 |
+
# record the time of every iteration.
|
175 |
+
timer=dict(type=IterTimerHook),
|
176 |
+
# print log every 10 iterations.
|
177 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
178 |
+
# enable the parameter scheduler.
|
179 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
180 |
+
# save checkpoint per `save_steps`.
|
181 |
+
checkpoint=dict(
|
182 |
+
type=CheckpointHook,
|
183 |
+
by_epoch=False,
|
184 |
+
interval=save_steps,
|
185 |
+
max_keep_ckpts=save_total_limit),
|
186 |
+
# set sampler seed in distributed evrionment.
|
187 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
188 |
+
)
|
189 |
+
|
190 |
+
# configure environment
|
191 |
+
env_cfg = dict(
|
192 |
+
# whether to enable cudnn benchmark
|
193 |
+
cudnn_benchmark=False,
|
194 |
+
# set multi process parameters
|
195 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
196 |
+
# set distributed parameters
|
197 |
+
dist_cfg=dict(backend='nccl'),
|
198 |
+
)
|
199 |
+
|
200 |
+
# set visualizer
|
201 |
+
visualizer = None
|
202 |
+
|
203 |
+
# set log level
|
204 |
+
log_level = 'INFO'
|
205 |
+
|
206 |
+
# load from which checkpoint
|
207 |
+
load_from = None
|
208 |
+
|
209 |
+
# whether to resume training from the loaded checkpoint
|
210 |
+
resume = False
|
211 |
+
|
212 |
+
# Defaults to use random seed and disable `deterministic`
|
213 |
+
randomness = dict(seed=None, deterministic=False)
|
214 |
+
|
215 |
+
# set log processor
|
216 |
+
log_processor = dict(by_epoch=False)
|