# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.distributed as dist from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb from xtuner.parallel.sequence import get_sequence_parallel_world_size from xtuner.parallel.sequence.attention import ( post_process_for_sequence_parallel_attn, pre_process_for_sequence_parallel_attn) try: from transformers.cache_utils import Cache except ImportError: class Cache: pass def cohere_attn_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ): output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) if self.use_qk_norm: query_states = self.q_norm(query_states) key_states = self.k_norm(key_states) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) past_key_value = getattr(self, 'past_key_value', past_key_value) if past_key_value is not None: # sin and cos are specific to RoPE models; position_ids needed for # the static cache cache_kwargs = { 'sin': sin, 'cos': cos, 'cache_position': cache_position } key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires # the layout [batch_size, sequence_length, num_heads, head_dim]. # We would need to refactor the KV cache to be able to avoid many of # these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # Ignore copy # In PEFT, usually we cast the layer norms in float32 for training # stability reasons therefore the input hidden states gets silently # casted in float32. Hence, we need cast them back in the correct dtype # just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not # cast the LayerNorms in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, '_pre_quantization_dtype'): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) enable_sequence_parallel = ( dist.is_initialized() and get_sequence_parallel_world_size() > 1 and self.training) if enable_sequence_parallel: query_states, key_states, value_states = \ pre_process_for_sequence_parallel_attn( query_states, key_states, value_states) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate) if enable_sequence_parallel: attn_output = post_process_for_sequence_parallel_attn(attn_output) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value