File size: 42,746 Bytes
f4355cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "2fd69392",
"metadata": {},
"outputs": [],
"source": [
"# Tutorial url\n",
"# https://medium.com/data-and-beyond/complete-guide-to-building-bert-model-from-sratch-3e6562228891"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7bc1129e",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: transformers in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (4.24.0)\n",
"Collecting datasets\n",
" Downloading datasets-2.13.1-py3-none-any.whl (486 kB)\n",
" ------------------------------------- 486.2/486.2 kB 10.1 MB/s eta 0:00:00\n",
"Requirement already satisfied: tokenizers in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (0.11.4)\n",
"Requirement already satisfied: packaging>=20.0 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from transformers) (22.0)\n",
"Requirement already satisfied: tqdm>=4.27 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from transformers) (4.64.1)\n",
"Requirement already satisfied: numpy>=1.17 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from transformers) (1.23.5)\n",
"Requirement already satisfied: huggingface-hub<1.0,>=0.10.0 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from transformers) (0.10.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from transformers) (6.0)\n",
"Requirement already satisfied: requests in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from transformers) (2.28.1)\n",
"Requirement already satisfied: filelock in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from transformers) (3.9.0)\n",
"Requirement already satisfied: regex!=2019.12.17 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from transformers) (2022.7.9)\n",
"Collecting huggingface-hub<1.0,>=0.10.0\n",
" Downloading huggingface_hub-0.16.2-py3-none-any.whl (268 kB)\n",
" ------------------------------------- 268.5/268.5 kB 16.1 MB/s eta 0:00:00\n",
"Requirement already satisfied: pandas in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from datasets) (1.5.3)\n",
"Collecting aiohttp\n",
" Downloading aiohttp-3.8.4-cp310-cp310-win_amd64.whl (319 kB)\n",
" ---------------------------------------- 319.8/319.8 kB ? eta 0:00:00\n",
"Requirement already satisfied: fsspec[http]>=2021.11.1 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from datasets) (2022.11.0)\n",
"Collecting xxhash\n",
" Downloading xxhash-3.2.0-cp310-cp310-win_amd64.whl (30 kB)\n",
"Collecting pyarrow>=8.0.0\n",
" Downloading pyarrow-12.0.1-cp310-cp310-win_amd64.whl (21.5 MB)\n",
" --------------------------------------- 21.5/21.5 MB 26.1 MB/s eta 0:00:00\n",
"Collecting multiprocess\n",
" Downloading multiprocess-0.70.14-py310-none-any.whl (134 kB)\n",
" -------------------------------------- 134.3/134.3 kB 8.3 MB/s eta 0:00:00\n",
"Requirement already satisfied: dill<0.3.7,>=0.3.0 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from datasets) (0.3.6)\n",
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from aiohttp->datasets) (2.0.4)\n",
"Collecting yarl<2.0,>=1.0\n",
" Downloading yarl-1.9.2-cp310-cp310-win_amd64.whl (61 kB)\n",
" ---------------------------------------- 61.0/61.0 kB ? eta 0:00:00\n",
"Collecting aiosignal>=1.1.2\n",
" Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
"Collecting frozenlist>=1.1.1\n",
" Downloading frozenlist-1.3.3-cp310-cp310-win_amd64.whl (33 kB)\n",
"Collecting async-timeout<5.0,>=4.0.0a3\n",
" Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
"Collecting multidict<7.0,>=4.5\n",
" Downloading multidict-6.0.4-cp310-cp310-win_amd64.whl (28 kB)\n",
"Requirement already satisfied: attrs>=17.3.0 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from aiohttp->datasets) (22.1.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from huggingface-hub<1.0,>=0.10.0->transformers) (4.4.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from requests->transformers) (3.4)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from requests->transformers) (1.26.14)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from requests->transformers) (2022.12.7)\n",
"Requirement already satisfied: colorama in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from tqdm>=4.27->transformers) (0.4.6)\n",
"Requirement already satisfied: python-dateutil>=2.8.1 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from pandas->datasets) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from pandas->datasets) (2022.7)\n",
"Requirement already satisfied: six>=1.5 in c:\\users\\yozhan\\appdata\\local\\anaconda3\\lib\\site-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
"Installing collected packages: xxhash, pyarrow, multiprocess, multidict, frozenlist, async-timeout, yarl, huggingface-hub, aiosignal, aiohttp, datasets\n",
" Attempting uninstall: huggingface-hub\n",
" Found existing installation: huggingface-hub 0.10.1\n",
" Uninstalling huggingface-hub-0.10.1:\n",
" Successfully uninstalled huggingface-hub-0.10.1\n",
"Successfully installed aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 datasets-2.13.1 frozenlist-1.3.3 huggingface-hub-0.16.2 multidict-6.0.4 multiprocess-0.70.14 pyarrow-12.0.1 xxhash-3.2.0 yarl-1.9.2\n"
]
}
],
"source": [
"!pip install transformers datasets tokenizers"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c23bad9a",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.chdir(r\"C:\\Users\\yozhan\\cryptocurrency\\tutorial\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d6d279f1",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"import torch\n",
"import re\n",
"import random\n",
"import transformers, datasets\n",
"from tokenizers import BertWordPieceTokenizer\n",
"from transformers import BertTokenizer\n",
"import tqdm\n",
"from torch.utils.data import Dataset, DataLoader\n",
"import itertools\n",
"import math\n",
"import torch.nn.functional as F\n",
"import numpy as np\n",
"from torch.optim import Adam\n",
"\n",
"MAX_LEN = 64"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "af0bf9cb",
"metadata": {},
"outputs": [],
"source": [
"### loading all data into memory\n",
"corpus_movie_conv = r'.\\cornell_movie-dialogs_corpus\\movie_conversations.txt'\n",
"corpus_movie_lines = '.\\cornell_movie-dialogs_corpus\\movie_lines.txt'\n",
"with open(corpus_movie_conv, 'r', encoding='iso-8859-1') as c:\n",
" conv = c.readlines()\n",
"with open(corpus_movie_lines, 'r', encoding='iso-8859-1') as l:\n",
" lines = l.readlines()\n",
"\n",
"### splitting text using special lines\n",
"lines_dic = {}\n",
"for line in lines:\n",
" objects = line.split(\" +++$+++ \")\n",
" lines_dic[objects[0]] = objects[-1]\n",
"\n",
"### generate question answer pairs\n",
"pairs = []\n",
"for con in conv:\n",
" \n",
" # get a list of sentence ids\n",
" ids = eval(con.split(\" +++$+++ \")[-1])\n",
" for i in range(len(ids)):\n",
" qa_pairs = []\n",
" \n",
" # if this is the last id\n",
" if i == len(ids) - 1:\n",
" break\n",
"\n",
" first = lines_dic[ids[i]].strip() \n",
" second = lines_dic[ids[i+1]].strip() \n",
"\n",
" qa_pairs.append(' '.join(first.split()[:MAX_LEN]))\n",
" qa_pairs.append(' '.join(second.split()[:MAX_LEN]))\n",
" pairs.append(qa_pairs)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "c9f5a78d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Can we make this quick? Roxanne Korrine and Andrew Barrett are having an incredibly horrendous public break- up on the quad. Again.', \"Well, I thought we'd start with pronunciation, if that's okay with you.\"]\n"
]
}
],
"source": [
"print(pairs[0])"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "28b4a8b9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 221616/221616 [00:00<00:00, 1154039.87it/s]\n",
"C:\\Users\\yozhan\\AppData\\Local\\anaconda3\\lib\\site-packages\\transformers\\tokenization_utils_base.py:1679: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead.\n",
" warnings.warn(\n"
]
}
],
"source": [
"os.mkdir('./data')\n",
"text_data = []\n",
"file_count = 0\n",
"\n",
"for sample in tqdm.tqdm([x[0] for x in pairs]):\n",
" text_data.append(sample)\n",
"\n",
" # once we hit the 10K mark, save to file\n",
" if len(text_data) == 10000:\n",
" with open(f'./data/text_{file_count}.txt', 'w', encoding='utf-8') as fp:\n",
" fp.write('\\n'.join(text_data))\n",
" text_data = []\n",
" file_count += 1\n",
"\n",
"paths = [str(x) for x in Path('./data').glob('**/*.txt')]\n",
"\n",
"### training own tokenizer\n",
"tokenizer = BertWordPieceTokenizer(\n",
" clean_text=True,\n",
" handle_chinese_chars=False,\n",
" strip_accents=False,\n",
" lowercase=True\n",
")\n",
"\n",
"tokenizer.train( \n",
" files=paths,\n",
" vocab_size=30_000, \n",
" min_frequency=5,\n",
" limit_alphabet=1000, \n",
" wordpieces_prefix='##',\n",
" special_tokens=['[PAD]', '[CLS]', '[SEP]', '[MASK]', '[UNK]']\n",
" )\n",
"\n",
"os.mkdir('./bert-it-1')\n",
"tokenizer.save_model('./bert-it-1', 'bert-it')\n",
"tokenizer = BertTokenizer.from_pretrained('./bert-it-1/bert-it-vocab.txt', local_files_only=True)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "30e775ad",
"metadata": {},
"outputs": [],
"source": [
"class BERTDataset(Dataset):\n",
" def __init__(self, data_pair, tokenizer, seq_len=64):\n",
"\n",
" self.tokenizer = tokenizer\n",
" self.seq_len = seq_len\n",
" self.corpus_lines = len(data_pair)\n",
" self.lines = data_pair\n",
"\n",
" def __len__(self):\n",
" return self.corpus_lines\n",
"\n",
" def __getitem__(self, item):\n",
"\n",
" # Step 1: get random sentence pair, either negative or positive (saved as is_next_label)\n",
" t1, t2, is_next_label = self.get_sent(item)\n",
"\n",
" # Step 2: replace random words in sentence with mask / random words\n",
" t1_random, t1_label = self.random_word(t1)\n",
" t2_random, t2_label = self.random_word(t2)\n",
"\n",
" # Step 3: Adding CLS and SEP tokens to the start and end of sentences\n",
" # Adding PAD token for labels\n",
" t1 = [self.tokenizer.vocab['[CLS]']] + t1_random + [self.tokenizer.vocab['[SEP]']]\n",
" t2 = t2_random + [self.tokenizer.vocab['[SEP]']]\n",
" t1_label = [self.tokenizer.vocab['[PAD]']] + t1_label + [self.tokenizer.vocab['[PAD]']]\n",
" t2_label = t2_label + [self.tokenizer.vocab['[PAD]']]\n",
"\n",
" # Step 4: combine sentence 1 and 2 as one input\n",
" # adding PAD tokens to make the sentence same length as seq_len\n",
" segment_label = ([1 for _ in range(len(t1))] + [2 for _ in range(len(t2))])[:self.seq_len]\n",
" bert_input = (t1 + t2)[:self.seq_len]\n",
" bert_label = (t1_label + t2_label)[:self.seq_len]\n",
" padding = [self.tokenizer.vocab['[PAD]'] for _ in range(self.seq_len - len(bert_input))]\n",
" bert_input.extend(padding), bert_label.extend(padding), segment_label.extend(padding)\n",
"\n",
" output = {\"bert_input\": bert_input,\n",
" \"bert_label\": bert_label,\n",
" \"segment_label\": segment_label,\n",
" \"is_next\": is_next_label}\n",
"\n",
" return {key: torch.tensor(value) for key, value in output.items()}\n",
"\n",
" def random_word(self, sentence):\n",
" tokens = sentence.split()\n",
" output_label = []\n",
" output = []\n",
"\n",
" # 15% of the tokens would be replaced\n",
" for i, token in enumerate(tokens):\n",
" prob = random.random()\n",
"\n",
" # remove cls and sep token\n",
" token_id = self.tokenizer(token)['input_ids'][1:-1]\n",
"\n",
" if prob < 0.15:\n",
" prob /= 0.15\n",
"\n",
" # 80% chance change token to mask token\n",
" if prob < 0.8:\n",
" for i in range(len(token_id)):\n",
" output.append(self.tokenizer.vocab['[MASK]'])\n",
"\n",
" # 10% chance change token to random token\n",
" elif prob < 0.9:\n",
" for i in range(len(token_id)):\n",
" output.append(random.randrange(len(self.tokenizer.vocab)))\n",
"\n",
" # 10% chance change token to current token\n",
" else:\n",
" output.append(token_id)\n",
"\n",
" output_label.append(token_id)\n",
"\n",
" else:\n",
" output.append(token_id)\n",
" for i in range(len(token_id)):\n",
" output_label.append(0)\n",
"\n",
" # flattening\n",
" output = list(itertools.chain(*[[x] if not isinstance(x, list) else x for x in output]))\n",
" output_label = list(itertools.chain(*[[x] if not isinstance(x, list) else x for x in output_label]))\n",
" assert len(output) == len(output_label)\n",
" return output, output_label\n",
"\n",
" def get_sent(self, index):\n",
" '''return random sentence pair'''\n",
" t1, t2 = self.get_corpus_line(index)\n",
"\n",
" # negative or positive pair, for next sentence prediction\n",
" if random.random() > 0.5:\n",
" return t1, t2, 1\n",
" else:\n",
" return t1, self.get_random_line(), 0\n",
"\n",
" def get_corpus_line(self, item):\n",
" '''return sentence pair'''\n",
" return self.lines[item][0], self.lines[item][1]\n",
"\n",
" def get_random_line(self):\n",
" '''return random single sentence'''\n",
" return self.lines[random.randrange(len(self.lines))][1]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "b0d9f35c",
"metadata": {},
"outputs": [],
"source": [
"train_data = BERTDataset(\n",
" pairs, seq_len=MAX_LEN, tokenizer=tokenizer)\n",
"train_loader = DataLoader(\n",
" train_data, batch_size=32, shuffle=True, pin_memory=True)\n",
"sample_data = next(iter(train_loader))"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "ad60cf79",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'bert_input': tensor([ 1, 182, 11, 58, 162, 874, 34, 2, 6, 3232, 108, 512,\n",
" 17, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0]), 'bert_label': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 'segment_label': tensor([1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 'is_next': tensor(1)}\n"
]
}
],
"source": [
"print(train_data[random.randrange(len(train_data))])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "bd70e96e",
"metadata": {},
"outputs": [],
"source": [
"class PositionalEmbedding(torch.nn.Module):\n",
"\n",
" def __init__(self, d_model, max_len=128):\n",
" super().__init__()\n",
"\n",
" # Compute the positional encodings once in log space.\n",
" pe = torch.zeros(max_len, d_model).float()\n",
" pe.require_grad = False\n",
"\n",
" for pos in range(max_len): \n",
" # for each dimension of the each position\n",
" for i in range(0, d_model, 2): \n",
" pe[pos, i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))\n",
" pe[pos, i + 1] = math.cos(pos / (10000 ** ((2 * (i + 1))/d_model)))\n",
"\n",
" # include the batch size\n",
" self.pe = pe.unsqueeze(0) \n",
" # self.register_buffer('pe', pe)\n",
"\n",
" def forward(self, x):\n",
" return self.pe\n",
"\n",
"class BERTEmbedding(torch.nn.Module):\n",
" \"\"\"\n",
" BERT Embedding which is consisted with under features\n",
" 1. TokenEmbedding : normal embedding matrix\n",
" 2. PositionalEmbedding : adding positional information using sin, cos\n",
" 2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2)\n",
" sum of all these features are output of BERTEmbedding\n",
" \"\"\"\n",
"\n",
" def __init__(self, vocab_size, embed_size, seq_len=64, dropout=0.1):\n",
" \"\"\"\n",
" :param vocab_size: total vocab size\n",
" :param embed_size: embedding size of token embedding\n",
" :param dropout: dropout rate\n",
" \"\"\"\n",
"\n",
" super().__init__()\n",
" self.embed_size = embed_size\n",
" # (m, seq_len) --> (m, seq_len, embed_size)\n",
" # padding_idx is not updated during training, remains as fixed pad (0)\n",
" self.token = torch.nn.Embedding(vocab_size, embed_size, padding_idx=0)\n",
" self.segment = torch.nn.Embedding(3, embed_size, padding_idx=0)\n",
" self.position = PositionalEmbedding(d_model=embed_size, max_len=seq_len)\n",
" self.dropout = torch.nn.Dropout(p=dropout)\n",
" \n",
" def forward(self, sequence, segment_label):\n",
" x = self.token(sequence) + self.position(sequence) + self.segment(segment_label)\n",
" return self.dropout(x)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "baa5caa0",
"metadata": {},
"outputs": [],
"source": [
"### attention layers\n",
"class MultiHeadedAttention(torch.nn.Module):\n",
" \n",
" def __init__(self, heads, d_model, dropout=0.1):\n",
" super(MultiHeadedAttention, self).__init__()\n",
" \n",
" assert d_model % heads == 0\n",
" self.d_k = d_model // heads\n",
" self.heads = heads\n",
" self.dropout = torch.nn.Dropout(dropout)\n",
"\n",
" self.query = torch.nn.Linear(d_model, d_model)\n",
" self.key = torch.nn.Linear(d_model, d_model)\n",
" self.value = torch.nn.Linear(d_model, d_model)\n",
" self.output_linear = torch.nn.Linear(d_model, d_model)\n",
" \n",
" def forward(self, query, key, value, mask):\n",
" \"\"\"\n",
" query, key, value of shape: (batch_size, max_len, d_model)\n",
" mask of shape: (batch_size, 1, 1, max_words)\n",
" \"\"\"\n",
" # (batch_size, max_len, d_model)\n",
" query = self.query(query)\n",
" key = self.key(key) \n",
" value = self.value(value) \n",
" \n",
" # (batch_size, max_len, d_model) --> (batch_size, max_len, h, d_k) --> (batch_size, h, max_len, d_k)\n",
" query = query.view(query.shape[0], -1, self.heads, self.d_k).permute(0, 2, 1, 3) \n",
" key = key.view(key.shape[0], -1, self.heads, self.d_k).permute(0, 2, 1, 3) \n",
" value = value.view(value.shape[0], -1, self.heads, self.d_k).permute(0, 2, 1, 3) \n",
" \n",
" # (batch_size, h, max_len, d_k) matmul (batch_size, h, d_k, max_len) --> (batch_size, h, max_len, max_len)\n",
" scores = torch.matmul(query, key.permute(0, 1, 3, 2)) / math.sqrt(query.size(-1))\n",
"\n",
" # fill 0 mask with super small number so it wont affect the softmax weight\n",
" # (batch_size, h, max_len, max_len)\n",
" scores = scores.masked_fill(mask == 0, -1e9) \n",
"\n",
" # (batch_size, h, max_len, max_len)\n",
" # softmax to put attention weight for all non-pad tokens\n",
" # max_len X max_len matrix of attention\n",
" weights = F.softmax(scores, dim=-1) \n",
" weights = self.dropout(weights)\n",
"\n",
" # (batch_size, h, max_len, max_len) matmul (batch_size, h, max_len, d_k) --> (batch_size, h, max_len, d_k)\n",
" context = torch.matmul(weights, value)\n",
"\n",
" # (batch_size, h, max_len, d_k) --> (batch_size, max_len, h, d_k) --> (batch_size, max_len, d_model)\n",
" context = context.permute(0, 2, 1, 3).contiguous().view(context.shape[0], -1, self.heads * self.d_k)\n",
"\n",
" # (batch_size, max_len, d_model)\n",
" return self.output_linear(context)\n",
"\n",
"class FeedForward(torch.nn.Module):\n",
" \"Implements FFN equation.\"\n",
"\n",
" def __init__(self, d_model, middle_dim=2048, dropout=0.1):\n",
" super(FeedForward, self).__init__()\n",
" \n",
" self.fc1 = torch.nn.Linear(d_model, middle_dim)\n",
" self.fc2 = torch.nn.Linear(middle_dim, d_model)\n",
" self.dropout = torch.nn.Dropout(dropout)\n",
" self.activation = torch.nn.GELU()\n",
"\n",
" def forward(self, x):\n",
" out = self.activation(self.fc1(x))\n",
" out = self.fc2(self.dropout(out))\n",
" return out\n",
"\n",
"class EncoderLayer(torch.nn.Module):\n",
" def __init__(\n",
" self, \n",
" d_model=768,\n",
" heads=12, \n",
" feed_forward_hidden=768 * 4, \n",
" dropout=0.1\n",
" ):\n",
" super(EncoderLayer, self).__init__()\n",
" self.layernorm = torch.nn.LayerNorm(d_model)\n",
" self.self_multihead = MultiHeadedAttention(heads, d_model)\n",
" self.feed_forward = FeedForward(d_model, middle_dim=feed_forward_hidden)\n",
" self.dropout = torch.nn.Dropout(dropout)\n",
"\n",
" def forward(self, embeddings, mask):\n",
" # embeddings: (batch_size, max_len, d_model)\n",
" # encoder mask: (batch_size, 1, 1, max_len)\n",
" # result: (batch_size, max_len, d_model)\n",
" interacted = self.dropout(self.self_multihead(embeddings, embeddings, embeddings, mask))\n",
" # residual layer\n",
" interacted = self.layernorm(interacted + embeddings)\n",
" # bottleneck\n",
" feed_forward_out = self.dropout(self.feed_forward(interacted))\n",
" encoded = self.layernorm(feed_forward_out + interacted)\n",
" return encoded"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "33fe273b",
"metadata": {},
"outputs": [],
"source": [
"class BERT(torch.nn.Module):\n",
" \"\"\"\n",
" BERT model : Bidirectional Encoder Representations from Transformers.\n",
" \"\"\"\n",
"\n",
" def __init__(self, vocab_size, d_model=768, n_layers=12, heads=12, dropout=0.1):\n",
" \"\"\"\n",
" :param vocab_size: vocab_size of total words\n",
" :param hidden: BERT model hidden size\n",
" :param n_layers: numbers of Transformer blocks(layers)\n",
" :param attn_heads: number of attention heads\n",
" :param dropout: dropout rate\n",
" \"\"\"\n",
"\n",
" super().__init__()\n",
" self.d_model = d_model\n",
" self.n_layers = n_layers\n",
" self.heads = heads\n",
"\n",
" # paper noted they used 4 * hidden_size for ff_network_hidden_size\n",
" self.feed_forward_hidden = d_model * 4\n",
"\n",
" # embedding for BERT, sum of positional, segment, token embeddings\n",
" self.embedding = BERTEmbedding(vocab_size=vocab_size, embed_size=d_model)\n",
"\n",
" # multi-layers transformer blocks, deep network\n",
" self.encoder_blocks = torch.nn.ModuleList(\n",
" [EncoderLayer(d_model, heads, d_model * 4, dropout) for _ in range(n_layers)])\n",
"\n",
" def forward(self, x, segment_info):\n",
" # attention masking for padded token\n",
" # (batch_size, 1, seq_len, seq_len)\n",
" mask = (x > 0).unsqueeze(1).repeat(1, x.size(1), 1).unsqueeze(1)\n",
"\n",
" # embedding the indexed sequence to sequence of vectors\n",
" x = self.embedding(x, segment_info)\n",
"\n",
" # running over multiple transformer blocks\n",
" for encoder in self.encoder_blocks:\n",
" x = encoder.forward(x, mask)\n",
" return x\n",
"\n",
"class NextSentencePrediction(torch.nn.Module):\n",
" \"\"\"\n",
" 2-class classification model : is_next, is_not_next\n",
" \"\"\"\n",
"\n",
" def __init__(self, hidden):\n",
" \"\"\"\n",
" :param hidden: BERT model output size\n",
" \"\"\"\n",
" super().__init__()\n",
" self.linear = torch.nn.Linear(hidden, 2)\n",
" self.softmax = torch.nn.LogSoftmax(dim=-1)\n",
"\n",
" def forward(self, x):\n",
" # use only the first token which is the [CLS]\n",
" return self.softmax(self.linear(x[:, 0]))\n",
"\n",
"class MaskedLanguageModel(torch.nn.Module):\n",
" \"\"\"\n",
" predicting origin token from masked input sequence\n",
" n-class classification problem, n-class = vocab_size\n",
" \"\"\"\n",
"\n",
" def __init__(self, hidden, vocab_size):\n",
" \"\"\"\n",
" :param hidden: output size of BERT model\n",
" :param vocab_size: total vocab size\n",
" \"\"\"\n",
" super().__init__()\n",
" self.linear = torch.nn.Linear(hidden, vocab_size)\n",
" self.softmax = torch.nn.LogSoftmax(dim=-1)\n",
"\n",
" def forward(self, x):\n",
" return self.softmax(self.linear(x))\n",
"\n",
"class BERTLM(torch.nn.Module):\n",
" \"\"\"\n",
" BERT Language Model\n",
" Next Sentence Prediction Model + Masked Language Model\n",
" \"\"\"\n",
"\n",
" def __init__(self, bert: BERT, vocab_size):\n",
" \"\"\"\n",
" :param bert: BERT model which should be trained\n",
" :param vocab_size: total vocab size for masked_lm\n",
" \"\"\"\n",
"\n",
" super().__init__()\n",
" self.bert = bert\n",
" self.next_sentence = NextSentencePrediction(self.bert.d_model)\n",
" self.mask_lm = MaskedLanguageModel(self.bert.d_model, vocab_size)\n",
"\n",
" def forward(self, x, segment_label):\n",
" x = self.bert(x, segment_label)\n",
" return self.next_sentence(x), self.mask_lm(x)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "b8f7c1f8",
"metadata": {},
"outputs": [],
"source": [
"class ScheduledOptim():\n",
" '''A simple wrapper class for learning rate scheduling'''\n",
"\n",
" def __init__(self, optimizer, d_model, n_warmup_steps):\n",
" self._optimizer = optimizer\n",
" self.n_warmup_steps = n_warmup_steps\n",
" self.n_current_steps = 0\n",
" self.init_lr = np.power(d_model, -0.5)\n",
"\n",
" def step_and_update_lr(self):\n",
" \"Step with the inner optimizer\"\n",
" self._update_learning_rate()\n",
" self._optimizer.step()\n",
"\n",
" def zero_grad(self):\n",
" \"Zero out the gradients by the inner optimizer\"\n",
" self._optimizer.zero_grad()\n",
"\n",
" def _get_lr_scale(self):\n",
" return np.min([\n",
" np.power(self.n_current_steps, -0.5),\n",
" np.power(self.n_warmup_steps, -1.5) * self.n_current_steps])\n",
"\n",
" def _update_learning_rate(self):\n",
" ''' Learning rate scheduling per step '''\n",
"\n",
" self.n_current_steps += 1\n",
" lr = self.init_lr * self._get_lr_scale()\n",
"\n",
" for param_group in self._optimizer.param_groups:\n",
" param_group['lr'] = lr"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "9dd8e50e",
"metadata": {},
"outputs": [],
"source": [
"class BERTTrainer:\n",
" def __init__(\n",
" self, \n",
" model, \n",
" train_dataloader, \n",
" test_dataloader=None, \n",
" lr= 1e-4,\n",
" weight_decay=0.01,\n",
" betas=(0.9, 0.999),\n",
" warmup_steps=10000,\n",
" log_freq=10,\n",
" device='cuda'\n",
" ):\n",
"\n",
" self.device = device\n",
" self.model = model\n",
" self.train_data = train_dataloader\n",
" self.test_data = test_dataloader\n",
"\n",
" # Setting the Adam optimizer with hyper-param\n",
" self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)\n",
" self.optim_schedule = ScheduledOptim(\n",
" self.optim, self.model.bert.d_model, n_warmup_steps=warmup_steps\n",
" )\n",
"\n",
" # Using Negative Log Likelihood Loss function for predicting the masked_token\n",
" self.criterion = torch.nn.NLLLoss(ignore_index=0)\n",
" self.log_freq = log_freq\n",
" print(\"Total Parameters:\", sum([p.nelement() for p in self.model.parameters()]))\n",
" \n",
" def train(self, epoch):\n",
" self.iteration(epoch, self.train_data)\n",
"\n",
" def test(self, epoch):\n",
" self.iteration(epoch, self.test_data, train=False)\n",
"\n",
" def iteration(self, epoch, data_loader, train=True):\n",
" \n",
" avg_loss = 0.0\n",
" total_correct = 0\n",
" total_element = 0\n",
" \n",
" mode = \"train\" if train else \"test\"\n",
"\n",
" # progress bar\n",
" data_iter = tqdm.tqdm(\n",
" enumerate(data_loader),\n",
" desc=\"EP_%s:%d\" % (mode, epoch),\n",
" total=len(data_loader),\n",
" bar_format=\"{l_bar}{r_bar}\"\n",
" )\n",
"\n",
" for i, data in data_iter:\n",
"\n",
" # 0. batch_data will be sent into the device(GPU or cpu)\n",
" data = {key: value.to(self.device) for key, value in data.items()}\n",
"\n",
" # 1. forward the next_sentence_prediction and masked_lm model\n",
" next_sent_output, mask_lm_output = self.model.forward(data[\"bert_input\"], data[\"segment_label\"])\n",
"\n",
" # 2-1. NLL(negative log likelihood) loss of is_next classification result\n",
" next_loss = self.criterion(next_sent_output, data[\"is_next\"])\n",
"\n",
" # 2-2. NLLLoss of predicting masked token word\n",
" # transpose to (m, vocab_size, seq_len) vs (m, seq_len)\n",
" # criterion(mask_lm_output.view(-1, mask_lm_output.size(-1)), data[\"bert_label\"].view(-1))\n",
" mask_loss = self.criterion(mask_lm_output.transpose(1, 2), data[\"bert_label\"])\n",
"\n",
" # 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure\n",
" loss = next_loss + mask_loss\n",
"\n",
" # 3. backward and optimization only in train\n",
" if train:\n",
" self.optim_schedule.zero_grad()\n",
" loss.backward()\n",
" self.optim_schedule.step_and_update_lr()\n",
"\n",
" # next sentence prediction accuracy\n",
" correct = next_sent_output.argmax(dim=-1).eq(data[\"is_next\"]).sum().item()\n",
" avg_loss += loss.item()\n",
" total_correct += correct\n",
" total_element += data[\"is_next\"].nelement()\n",
"\n",
" post_fix = {\n",
" \"epoch\": epoch,\n",
" \"iter\": i,\n",
" \"avg_loss\": avg_loss / (i + 1),\n",
" \"avg_acc\": total_correct / total_element * 100,\n",
" \"loss\": loss.item()\n",
" }\n",
"\n",
" if i % self.log_freq == 0:\n",
" data_iter.write(str(post_fix))\n",
" print(\n",
" f\"EP{epoch}, {mode}: \\\n",
" avg_loss={avg_loss / len(data_iter)}, \\\n",
" total_acc={total_correct * 100.0 / total_element}\"\n",
" ) "
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "52de2072",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total Parameters: 46699434\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"EP_train:0: 0%|| 0/6926 [01:16<?, ?it/s]\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[28], line 20\u001b[0m\n\u001b[0;32m 17\u001b[0m epochs \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m20\u001b[39m\n\u001b[0;32m 19\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m epoch \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(epochs):\n\u001b[1;32m---> 20\u001b[0m \u001b[43mbert_trainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mepoch\u001b[49m\u001b[43m)\u001b[49m\n",
"Cell \u001b[1;32mIn[25], line 32\u001b[0m, in \u001b[0;36mBERTTrainer.train\u001b[1;34m(self, epoch)\u001b[0m\n\u001b[0;32m 31\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mtrain\u001b[39m(\u001b[38;5;28mself\u001b[39m, epoch):\n\u001b[1;32m---> 32\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miteration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mepoch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain_data\u001b[49m\u001b[43m)\u001b[49m\n",
"Cell \u001b[1;32mIn[25], line 75\u001b[0m, in \u001b[0;36mBERTTrainer.iteration\u001b[1;34m(self, epoch, data_loader, train)\u001b[0m\n\u001b[0;32m 73\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m train:\n\u001b[0;32m 74\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptim_schedule\u001b[38;5;241m.\u001b[39mzero_grad()\n\u001b[1;32m---> 75\u001b[0m \u001b[43mloss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptim_schedule\u001b[38;5;241m.\u001b[39mstep_and_update_lr()\n\u001b[0;32m 78\u001b[0m \u001b[38;5;66;03m# next sentence prediction accuracy\u001b[39;00m\n",
"File \u001b[1;32m~\\AppData\\Local\\anaconda3\\lib\\site-packages\\torch\\_tensor.py:396\u001b[0m, in \u001b[0;36mTensor.backward\u001b[1;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[0;32m 387\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m 388\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[0;32m 389\u001b[0m Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[0;32m 390\u001b[0m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 394\u001b[0m create_graph\u001b[38;5;241m=\u001b[39mcreate_graph,\n\u001b[0;32m 395\u001b[0m inputs\u001b[38;5;241m=\u001b[39minputs)\n\u001b[1;32m--> 396\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[1;32m~\\AppData\\Local\\anaconda3\\lib\\site-packages\\torch\\autograd\\__init__.py:173\u001b[0m, in \u001b[0;36mbackward\u001b[1;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[0;32m 168\u001b[0m retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[0;32m 170\u001b[0m \u001b[38;5;66;03m# The reason we repeat same the comment below is that\u001b[39;00m\n\u001b[0;32m 171\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[0;32m 172\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[1;32m--> 173\u001b[0m \u001b[43mVariable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execution_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[0;32m 174\u001b[0m \u001b[43m \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 175\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"train_data = BERTDataset(\n",
" pairs, seq_len=MAX_LEN, tokenizer=tokenizer)\n",
"\n",
"train_loader = DataLoader(\n",
" train_data, batch_size=32, shuffle=True, pin_memory=True)\n",
"\n",
"bert_model = BERT(\n",
" vocab_size=len(tokenizer.vocab),\n",
" d_model=768,\n",
" n_layers=2,\n",
" heads=12,\n",
" dropout=0.1\n",
")\n",
"\n",
"bert_lm = BERTLM(bert_model, len(tokenizer.vocab))\n",
"bert_trainer = BERTTrainer(bert_lm, train_loader, device='cpu')\n",
"epochs = 20\n",
"\n",
"for epoch in range(epochs):\n",
" bert_trainer.train(epoch)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|