Spaces:
Running
Running
File size: 10,379 Bytes
181f304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import gradio as gr
import torch
from PIL import ImageDraw, Image, ImageFont
import numpy as np
import requests
from io import BytesIO
import matplotlib.pyplot as plt
import torch
from transformers import SamModel, SamProcessor
import os
# Define variables
path = os.getcwd()
font_path = r'{}/arial.ttf'.format(path)
print(font_path)
# Load the pre-trained model - FastSAM
# fastsam_model = FastSAM('./FastSAM-s.pt')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
# Points
global_points = []
global_point_label = []
previous_box_points = 0
# Description
title = "<center><strong><font size='8'> π Segment food with clicks π</font></strong></center>"
instruction = """ # Instruction
This segmentation tool is built with HuggingFace SAM model. To use to label true mask, please follow the following steps \n
π₯ Step 1: Copy segmentation candidate image link and paste in 'Enter Image URL' and click 'Upload Image' \n
π₯ Step 2: Add positive (Add mask), negative (Remove Area), and bounding box for the food \n
π₯ Step 3: Click on 'Segment with prompts' to segment Image and see if there's a correct segmentation on the 3 options \n
π₯ Step 4: If not, you can repeat the process of adding prompt and segment until a correct one is generated. Prompt history will be retained unless reloading the image \n
π₯ Step 5: Download the satisfied segmentaion image through the icon on top right corner of the image, please name it with 'correct_seg_xxx' where xxx is the photo ID
"""
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def read_image(url):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
global global_points
global global_point_label
global_points = []
global_point_label = []
return img
# def show_mask(mask, ax, random_color=False):
# if random_color:
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
# else:
# color = np.array([30/255, 144/255, 255/255, 0.6])
# h, w = mask.shape[-2:]
# mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# ax.imshow(mask_image)
# def show_points(coords, labels, ax, marker_size=375):
# pos_points = coords[labels==1]
# neg_points = coords[labels==0]
# ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
# ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
# def show_masks_and_points_on_image(raw_image, mask, input_points, input_labels, args):
# masks = masks.squeeze() if len(masks.shape) == 4 else masks.unsqueeze(0) if len(masks.shape) == 2 else masks
# scores = scores.squeeze() if (scores.shape[0] == 1) & (len(scores.shape) == 3) else scores
# #
# input_points = np.array(input_points)
# labels = np.array(input_labels)
# #
# mask = mask.cpu().detach()
# plt.imshow(np.array(raw_image))
# ax = plt.gca()
# show_mask(mask, ax)
# show_points(input_points, labels, ax, marker_size=375)
# ax.axis("off")
# save_path = args.output
# if not os.path.exists(save_path):
# os.makedirs(save_path)
# plt.axis("off")
# fig = plt.gcf()
# plt.draw()
# try:
# buf = fig.canvas.tostring_rgb()
# except AttributeError:
# fig.canvas.draw()
# buf = fig.canvas.tostring_rgb()
# cols, rows = fig.canvas.get_width_height()
# img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
# cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
def format_prompt_points(points, labels):
prompt_points = [xy for xy, l in zip(points, labels) if l != 9]
point_labels = [l for l in labels if l != 9]
#
prompt_boxes = None
if len(point_labels) < len(labels):
prompt_boxes = [[np.array([xy for xy, l in zip(points, labels) if l == 9]).reshape(-1, 4).tolist()]]
return prompt_points, point_labels, prompt_boxes
# def get_mask_image(raw_image, mask):
# tmp_mask = np.array(mask)
# tmp_img_arr = np.array(raw_image)
# tmp_img_arr[tmp_mask == False] = [255,255,255]
# return tmp_img_arr
def get_mask_image(raw_image, mask):
tmp_mask = np.array(mask * 1)
tmp_mask[tmp_mask == 1] = 255
tmp_mask2 = np.expand_dims(tmp_mask, axis=2)
#
tmp_img_arr = np.array(raw_image)
tmp_img_arr = np.concatenate((tmp_img_arr, tmp_mask2), axis = 2)
return tmp_img_arr
def segment_with_points(
input,
input_size=1024,
iou_threshold=0.7,
conf_threshold=0.25,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
global global_points
global global_point_label
# read image
raw_image = Image.open(requests.get(input, stream=True).raw).convert("RGB")
# get prompts
prompt_points, point_labels, prompt_boxes = format_prompt_points(global_points, global_point_label)
print(prompt_points, point_labels, prompt_boxes)
# segment
inputs = processor(raw_image,
input_boxes = prompt_boxes,
input_points=[[prompt_points]],
input_labels=[point_labels],
return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
#
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
scores = outputs.iou_scores
# only show the first mask
# fig = show_masks_and_points_on_image(raw_image, masks[0][0][0], [global_points], global_point_label)
mask_images = [get_mask_image(raw_image, m) for m in masks[0][0]]
mask_img1, mask_img2, mask_img3 = mask_images
# return fig, None
return mask_img1, mask_img2, mask_img3
def find_font_size(text, font_path, image, target_width_ratio):
tested_font_size = 100
tested_font = ImageFont.truetype(font_path, tested_font_size)
observed_width = get_text_size(text, image, tested_font)
estimated_font_size = tested_font_size / (observed_width / image.width) * target_width_ratio
return round(estimated_font_size)
def get_text_size(text, image, font):
im = Image.new('RGB', (image.width, image.height))
draw = ImageDraw.Draw(im)
return draw.textlength(text, font)
def get_points_with_draw(image, label, evt: gr.SelectData):
global global_points
global global_point_label
global previous_box_points
x, y = evt.index[0], evt.index[1]
point_radius = 15
point_color = (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
global_points.append([x, y])
global_point_label.append(1 if label == 'Add Mask' else 0 if label == 'Remove Area' else 9)
print(x, y, label)
print(previous_box_points)
draw = ImageDraw.Draw(image)
if label != 'Bounding Box':
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
else:
if (previous_box_points == 0) | (previous_box_points%2 == 0):
target_width_ratio = 0.9
text = "Please Click Another Point For Bounding Box"
font_size = find_font_size(text, font_path, image, target_width_ratio)
font = ImageFont.truetype(font_path, font_size)
draw.text((x, y), text, fill = (0,0,0), font = font)
else:
[previous_x, previous_y] = global_points[-2]
print((previous_x, previous_y), (x, y))
draw.rectangle([(previous_x, previous_y), (x, y)], outline=(0, 0, 255), width=10)
previous_box_points += 1
return image
def clear():
global global_points
global global_point_label
global_points = []
global_point_label = []
previous_box_points = 0
return None, None, None, None
# Configure layout
cond_img_p = gr.Image(label="Input with points", type='pil')
segm_img_p1 = gr.Image(label="Segmented Image Option 1", interactive=False, type='pil', format="png")
segm_img_p2 = gr.Image(label="Segmented Image Option 2", interactive=False, type='pil', format="png")
segm_img_p3 = gr.Image(label="Segmented Image Option 3", interactive=False, type='pil', format="png")
with gr.Blocks(css=css, title='Segment Food with Prompts') as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(title)
gr.Markdown("")
image_url = gr.Textbox(label="Enter Image URL",
value = "https://img.cdn4dd.com/u/media/4da0fbcf-5e3d-45d4-8995-663fbcf3c3c8.jpg")
run_with_url = gr.Button("Upload Image")
with gr.Column(scale=1):
gr.Markdown(instruction)
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=0):
cond_img_p.render()
segm_img_p2.render()
with gr.Column(scale=0):
segm_img_p1.render()
segm_img_p3.render()
# Submit & Clear
with gr.Row():
with gr.Column():
add_or_remove = gr.Radio(["Add Mask", "Remove Area", "Bounding Box"],
value="Add Mask",
label="Point label")
with gr.Column():
segment_btn_p = gr.Button("Segment with prompts", variant='primary')
clear_btn_p = gr.Button("Clear points", variant='secondary')
# Define interaction relationship
run_with_url.click(read_image,
inputs=[image_url],
# outputs=[segm_img_p, cond_img_p])
outputs=[cond_img_p])
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
segment_btn_p.click(segment_with_points,
inputs=[image_url],
# outputs=[segm_img_p, cond_img_p])
outputs=[segm_img_p1, segm_img_p2, segm_img_p3])
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p1, segm_img_p2, segm_img_p3])
demo.queue()
demo.launch() |