Spaces:
Running
Running
segmentation points
Browse files
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Segment Anything
|
3 |
+
emoji: π
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.47.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,58 +1,273 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModel, AutoProcessor
|
3 |
import torch
|
|
|
|
|
4 |
import requests
|
5 |
-
from PIL import Image
|
6 |
from io import BytesIO
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
with torch.no_grad():
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
)
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from PIL import ImageDraw, Image, ImageFont
|
4 |
+
import numpy as np
|
5 |
import requests
|
|
|
6 |
from io import BytesIO
|
7 |
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import torch
|
10 |
+
from transformers import SamModel, SamProcessor
|
11 |
+
|
12 |
+
import os
|
13 |
+
|
14 |
+
|
15 |
+
# Define variables
|
16 |
+
path = os.getcwd()
|
17 |
+
font_path = r'{}/arial.ttf'.format(path)
|
18 |
+
|
19 |
+
# Load the pre-trained model - FastSAM
|
20 |
+
# fastsam_model = FastSAM('./FastSAM-s.pt')
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
|
23 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
24 |
+
|
25 |
+
# Points
|
26 |
+
global_points = []
|
27 |
+
global_point_label = []
|
28 |
+
previous_box_points = 0
|
29 |
+
|
30 |
+
# Description
|
31 |
+
title = "<center><strong><font size='8'> π Segment food with clicks π</font></strong></center>"
|
32 |
+
|
33 |
+
instruction = """ # Instruction
|
34 |
+
This segmentation tool is built with HuggingFace SAM model. To use to label true mask, please follow the following steps \n
|
35 |
+
π₯ Step 1: Copy segmentation candidate image link and paste in 'Enter Image URL' and click 'Upload Image' \n
|
36 |
+
π₯ Step 2: Add positive (Add mask), negative (Remove Area), and bounding box for the food \n
|
37 |
+
π₯ Step 3: Click on 'Segment with prompts' to segment Image and see if there's a correct segmentation on the 3 options \n
|
38 |
+
π₯ Step 4: If not, you can repeat the process of adding prompt and segment until a correct one is generated. Prompt history will be retained unless reloading the image \n
|
39 |
+
π₯ Step 5: Download the satisfied segmentaion image through the icon on top right corner of the image, please name it with 'correct_seg_xxx' where xxx is the photo ID
|
40 |
+
"""
|
41 |
+
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
42 |
+
|
43 |
+
# Others
|
44 |
+
font_path = '/Users/zhe.mai/Documents/segmentation_apps/segtesting/arial.ttf'
|
45 |
+
|
46 |
+
def read_image(url):
|
47 |
+
response = requests.get(url)
|
48 |
+
img = Image.open(BytesIO(response.content))
|
49 |
|
50 |
+
global global_points
|
51 |
+
global global_point_label
|
52 |
+
|
53 |
+
global_points = []
|
54 |
+
global_point_label = []
|
55 |
+
return img
|
56 |
+
|
57 |
+
# def show_mask(mask, ax, random_color=False):
|
58 |
+
# if random_color:
|
59 |
+
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
60 |
+
# else:
|
61 |
+
# color = np.array([30/255, 144/255, 255/255, 0.6])
|
62 |
+
# h, w = mask.shape[-2:]
|
63 |
+
# mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
64 |
+
# ax.imshow(mask_image)
|
65 |
+
|
66 |
+
# def show_points(coords, labels, ax, marker_size=375):
|
67 |
+
# pos_points = coords[labels==1]
|
68 |
+
# neg_points = coords[labels==0]
|
69 |
+
# ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
70 |
+
# ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
71 |
+
|
72 |
+
# def show_masks_and_points_on_image(raw_image, mask, input_points, input_labels, args):
|
73 |
+
# masks = masks.squeeze() if len(masks.shape) == 4 else masks.unsqueeze(0) if len(masks.shape) == 2 else masks
|
74 |
+
# scores = scores.squeeze() if (scores.shape[0] == 1) & (len(scores.shape) == 3) else scores
|
75 |
+
# #
|
76 |
+
# input_points = np.array(input_points)
|
77 |
+
# labels = np.array(input_labels)
|
78 |
+
# #
|
79 |
+
# mask = mask.cpu().detach()
|
80 |
+
# plt.imshow(np.array(raw_image))
|
81 |
+
# ax = plt.gca()
|
82 |
+
# show_mask(mask, ax)
|
83 |
+
# show_points(input_points, labels, ax, marker_size=375)
|
84 |
+
# ax.axis("off")
|
85 |
+
|
86 |
+
# save_path = args.output
|
87 |
+
# if not os.path.exists(save_path):
|
88 |
+
# os.makedirs(save_path)
|
89 |
+
# plt.axis("off")
|
90 |
+
# fig = plt.gcf()
|
91 |
+
# plt.draw()
|
92 |
|
93 |
+
# try:
|
94 |
+
# buf = fig.canvas.tostring_rgb()
|
95 |
+
# except AttributeError:
|
96 |
+
# fig.canvas.draw()
|
97 |
+
# buf = fig.canvas.tostring_rgb()
|
98 |
|
99 |
+
# cols, rows = fig.canvas.get_width_height()
|
100 |
+
# img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
|
101 |
+
# cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
|
102 |
+
|
103 |
+
def format_prompt_points(points, labels):
|
104 |
+
prompt_points = [xy for xy, l in zip(points, labels) if l != 9]
|
105 |
+
point_labels = [l for l in labels if l != 9]
|
106 |
+
#
|
107 |
+
prompt_boxes = None
|
108 |
+
if len(point_labels) < len(labels):
|
109 |
+
prompt_boxes = [[np.array([xy for xy, l in zip(points, labels) if l == 9]).reshape(-1, 4).tolist()]]
|
110 |
+
return prompt_points, point_labels, prompt_boxes
|
111 |
+
|
112 |
+
# def get_mask_image(raw_image, mask):
|
113 |
+
# tmp_mask = np.array(mask)
|
114 |
+
# tmp_img_arr = np.array(raw_image)
|
115 |
+
# tmp_img_arr[tmp_mask == False] = [255,255,255]
|
116 |
+
# return tmp_img_arr
|
117 |
+
|
118 |
+
def get_mask_image(raw_image, mask):
|
119 |
+
tmp_mask = np.array(mask * 1)
|
120 |
+
tmp_mask[tmp_mask == 1] = 255
|
121 |
+
tmp_mask2 = np.expand_dims(tmp_mask, axis=2)
|
122 |
+
#
|
123 |
+
tmp_img_arr = np.array(raw_image)
|
124 |
+
tmp_img_arr = np.concatenate((tmp_img_arr, tmp_mask2), axis = 2)
|
125 |
+
return tmp_img_arr
|
126 |
+
|
127 |
+
|
128 |
+
def segment_with_points(
|
129 |
+
input,
|
130 |
+
input_size=1024,
|
131 |
+
iou_threshold=0.7,
|
132 |
+
conf_threshold=0.25,
|
133 |
+
better_quality=False,
|
134 |
+
withContours=True,
|
135 |
+
use_retina=True,
|
136 |
+
mask_random_color=True,
|
137 |
+
):
|
138 |
+
global global_points
|
139 |
+
global global_point_label
|
140 |
+
|
141 |
+
# read image
|
142 |
+
raw_image = Image.open(requests.get(input, stream=True).raw).convert("RGB")
|
143 |
+
|
144 |
+
# get prompts
|
145 |
+
prompt_points, point_labels, prompt_boxes = format_prompt_points(global_points, global_point_label)
|
146 |
+
print(prompt_points, point_labels, prompt_boxes)
|
147 |
+
# segment
|
148 |
+
inputs = processor(raw_image,
|
149 |
+
input_boxes = prompt_boxes,
|
150 |
+
input_points=[[prompt_points]],
|
151 |
+
input_labels=[point_labels],
|
152 |
+
return_tensors="pt").to(device)
|
153 |
with torch.no_grad():
|
154 |
+
outputs = model(**inputs)
|
155 |
+
#
|
156 |
+
masks = processor.image_processor.post_process_masks(
|
157 |
+
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
|
158 |
+
scores = outputs.iou_scores
|
159 |
+
|
160 |
+
# only show the first mask
|
161 |
+
# fig = show_masks_and_points_on_image(raw_image, masks[0][0][0], [global_points], global_point_label)
|
162 |
+
mask_images = [get_mask_image(raw_image, m) for m in masks[0][0]]
|
163 |
+
mask_img1, mask_img2, mask_img3 = mask_images
|
164 |
+
# return fig, None
|
165 |
+
return mask_img1, mask_img2, mask_img3
|
166 |
+
|
167 |
+
def find_font_size(text, font_path, image, target_width_ratio):
|
168 |
+
tested_font_size = 100
|
169 |
+
tested_font = ImageFont.truetype(font_path, tested_font_size)
|
170 |
+
observed_width = get_text_size(text, image, tested_font)
|
171 |
+
estimated_font_size = tested_font_size / (observed_width / image.width) * target_width_ratio
|
172 |
+
return round(estimated_font_size)
|
173 |
+
|
174 |
+
def get_text_size(text, image, font):
|
175 |
+
im = Image.new('RGB', (image.width, image.height))
|
176 |
+
draw = ImageDraw.Draw(im)
|
177 |
+
return draw.textlength(text, font)
|
178 |
+
|
179 |
+
|
180 |
+
def get_points_with_draw(image, label, evt: gr.SelectData):
|
181 |
+
global global_points
|
182 |
+
global global_point_label
|
183 |
+
global previous_box_points
|
184 |
+
|
185 |
+
x, y = evt.index[0], evt.index[1]
|
186 |
+
point_radius = 15
|
187 |
+
point_color = (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
188 |
+
global_points.append([x, y])
|
189 |
+
global_point_label.append(1 if label == 'Add Mask' else 0 if label == 'Remove Area' else 9)
|
190 |
+
|
191 |
+
print(x, y, label)
|
192 |
+
print(previous_box_points)
|
193 |
+
|
194 |
+
draw = ImageDraw.Draw(image)
|
195 |
+
if label != 'Bounding Box':
|
196 |
+
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
197 |
+
else:
|
198 |
+
if (previous_box_points == 0) | (previous_box_points%2 == 0):
|
199 |
+
target_width_ratio = 0.9
|
200 |
+
text = "Please Click Another Point For Bounding Box"
|
201 |
+
font_size = find_font_size(text, font_path, image, target_width_ratio)
|
202 |
+
font = ImageFont.truetype(font_path, font_size)
|
203 |
+
draw.text((x, y), text, fill = (0,0,0), font = font)
|
204 |
+
else:
|
205 |
+
[previous_x, previous_y] = global_points[-2]
|
206 |
+
print((previous_x, previous_y), (x, y))
|
207 |
+
draw.rectangle([(previous_x, previous_y), (x, y)], outline=(0, 0, 255), width=10)
|
208 |
+
previous_box_points += 1
|
209 |
+
return image
|
210 |
+
|
211 |
+
def clear():
|
212 |
+
global global_points
|
213 |
+
global global_point_label
|
214 |
+
|
215 |
+
global_points = []
|
216 |
+
global_point_label = []
|
217 |
+
previous_box_points = 0
|
218 |
+
return None, None, None, None
|
219 |
+
|
220 |
+
|
221 |
+
# Configure layout
|
222 |
+
cond_img_p = gr.Image(label="Input with points", type='pil')
|
223 |
+
segm_img_p1 = gr.Image(label="Segmented Image Option 1", interactive=False, type='pil', format="png")
|
224 |
+
segm_img_p2 = gr.Image(label="Segmented Image Option 2", interactive=False, type='pil', format="png")
|
225 |
+
segm_img_p3 = gr.Image(label="Segmented Image Option 3", interactive=False, type='pil', format="png")
|
226 |
+
|
227 |
+
with gr.Blocks(css=css, title='Segment Food with Prompts') as demo:
|
228 |
+
with gr.Row():
|
229 |
+
with gr.Column(scale=1):
|
230 |
+
gr.Markdown(title)
|
231 |
+
gr.Markdown("")
|
232 |
+
image_url = gr.Textbox(label="Enter Image URL",
|
233 |
+
value = "https://img.cdn4dd.com/u/media/4da0fbcf-5e3d-45d4-8995-663fbcf3c3c8.jpg")
|
234 |
+
run_with_url = gr.Button("Upload Image")
|
235 |
+
with gr.Column(scale=1):
|
236 |
+
gr.Markdown(instruction)
|
237 |
+
|
238 |
+
# Images
|
239 |
+
with gr.Row(variant="panel"):
|
240 |
+
with gr.Column(scale=0):
|
241 |
+
cond_img_p.render()
|
242 |
+
segm_img_p2.render()
|
243 |
+
with gr.Column(scale=0):
|
244 |
+
segm_img_p1.render()
|
245 |
+
segm_img_p3.render()
|
246 |
+
|
247 |
+
# Submit & Clear
|
248 |
+
with gr.Row():
|
249 |
+
with gr.Column():
|
250 |
+
add_or_remove = gr.Radio(["Add Mask", "Remove Area", "Bounding Box"],
|
251 |
+
value="Add Mask",
|
252 |
+
label="Point label")
|
253 |
+
with gr.Column():
|
254 |
+
segment_btn_p = gr.Button("Segment with prompts", variant='primary')
|
255 |
+
clear_btn_p = gr.Button("Clear points", variant='secondary')
|
256 |
+
|
257 |
+
# Define interaction relationship
|
258 |
+
run_with_url.click(read_image,
|
259 |
+
inputs=[image_url],
|
260 |
+
# outputs=[segm_img_p, cond_img_p])
|
261 |
+
outputs=[cond_img_p])
|
262 |
+
|
263 |
+
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
264 |
+
|
265 |
+
segment_btn_p.click(segment_with_points,
|
266 |
+
inputs=[image_url],
|
267 |
+
# outputs=[segm_img_p, cond_img_p])
|
268 |
+
outputs=[segm_img_p1, segm_img_p2, segm_img_p3])
|
269 |
+
|
270 |
+
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p1, segm_img_p2, segm_img_p3])
|
271 |
+
|
272 |
+
demo.queue()
|
273 |
demo.launch()
|
arial.ttf
ADDED
Binary file (312 kB). View file
|
|
requirements.txt
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
ftfy
|
7 |
|
8 |
-
# This is only needed for local deployment
|
9 |
-
gradio
|
|
|
1 |
+
matplotlib==3.2.2
|
2 |
+
numpy
|
3 |
+
opencv-python
|
4 |
+
transformers==4.49.0
|
5 |
+
pillow==11.1.0
|
|
|
6 |
|
|
|
|