File size: 8,830 Bytes
c02bdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import json
import logging
import re
from typing import Dict, Tuple, List, Literal, Callable, Optional
import sys

from numba import jit
import numpy as np

from .utils import del_all


@jit
def _find_index(table: np.ndarray, val: np.uint16):
    for i in range(table.size):
        if table[i] == val:
            return i
    return -1


@jit
def _fast_replace(
    table: np.ndarray, text: bytes
) -> Tuple[np.ndarray, List[Tuple[str, str]]]:
    result = np.frombuffer(text, dtype=np.uint16).copy()
    replaced_words = []
    for i in range(result.size):
        ch = result[i]
        p = _find_index(table[0], ch)
        if p >= 0:
            repl_char = table[1][p]
            result[i] = repl_char
            replaced_words.append((chr(ch), chr(repl_char)))
    return result, replaced_words


@jit
def _split_tags(text: str) -> Tuple[List[str], List[str]]:
    texts: List[str] = []
    tags: List[str] = []
    current_text = ""
    current_tag = ""
    for c in text:
        if c == "[":
            texts.append(current_text)
            current_text = ""
            current_tag = c
        elif current_tag != "":
            current_tag += c
        else:
            current_text += c
        if c == "]":
            tags.append(current_tag)
            current_tag = ""
    if current_text != "":
        texts.append(current_text)
    return texts, tags


@jit
def _combine_tags(texts: List[str], tags: List[str]) -> str:
    text = ""
    for t in texts:
        tg = ""
        if len(tags) > 0:
            tg = tags.pop(0)
        text += t + tg
    return text


class Normalizer:
    def __init__(self, map_file_path: str, logger=logging.getLogger(__name__)):
        self.logger = logger
        self.normalizers: Dict[str, Callable[[str], str]] = {}
        self.homophones_map = self._load_homophones_map(map_file_path)
        """
        homophones_map

        Replace the mispronounced characters with correctly pronounced ones.

        Creation process of homophones_map.json:

        1. Establish a word corpus using the [Tencent AI Lab Embedding Corpora v0.2.0 large] with 12 million entries. After cleaning, approximately 1.8 million entries remain. Use ChatTTS to infer the text.
        2. Record discrepancies between the inferred and input text, identifying about 180,000 misread words.
        3. Create a pinyin to common characters mapping using correctly read characters by ChatTTS.
        4. For each discrepancy, extract the correct pinyin using [python-pinyin] and find homophones with the correct pronunciation from the mapping.

        Thanks to:
        [Tencent AI Lab Embedding Corpora for Chinese and English Words and Phrases](https://ai.tencent.com/ailab/nlp/en/embedding.html)
        [python-pinyin](https://github.com/mozillazg/python-pinyin)

        """
        self.coding = "utf-16-le" if sys.byteorder == "little" else "utf-16-be"
        self.reject_pattern = re.compile(r"[^\u4e00-\u9fffA-Za-z,。、,\. ]")
        self.sub_pattern = re.compile(r"\[[\w_]+\]")
        self.chinese_char_pattern = re.compile(r"[\u4e00-\u9fff]")
        self.english_word_pattern = re.compile(r"\b[A-Za-z]+\b")
        self.character_simplifier = str.maketrans(
            {
                ":": ",",
                ";": ",",
                "!": "。",
                "(": ",",
                ")": ",",
                "【": ",",
                "】": ",",
                "『": ",",
                "』": ",",
                "「": ",",
                "」": ",",
                "《": ",",
                "》": ",",
                "-": ",",
                ":": ",",
                ";": ",",
                "!": ".",
                "(": ",",
                ")": ",",
                # "[": ",",
                # "]": ",",
                ">": ",",
                "<": ",",
                "-": ",",
            }
        )
        self.halfwidth_2_fullwidth = str.maketrans(
            {
                "!": "!",
                '"': "“",
                "'": "‘",
                "#": "#",
                "$": "$",
                "%": "%",
                "&": "&",
                "(": "(",
                ")": ")",
                ",": ",",
                "-": "-",
                "*": "*",
                "+": "+",
                ".": "。",
                "/": "/",
                ":": ":",
                ";": ";",
                "<": "<",
                "=": "=",
                ">": ">",
                "?": "?",
                "@": "@",
                # '[': '[',
                "\\": "\",
                # ']': ']',
                "^": "^",
                # '_': '_',
                "`": "`",
                "{": "{",
                "|": "|",
                "}": "}",
                "~": "~",
            }
        )

    def __call__(
        self,
        text: str,
        do_text_normalization=True,
        do_homophone_replacement=True,
        lang: Optional[Literal["zh", "en"]] = None,
    ) -> str:
        if do_text_normalization:
            _lang = self._detect_language(text) if lang is None else lang
            if _lang in self.normalizers:
                texts, tags = _split_tags(text)
                self.logger.debug("split texts %s, tags %s", str(texts), str(tags))
                texts = [self.normalizers[_lang](t) for t in texts]
                self.logger.debug("normed texts %s", str(texts))
                text = _combine_tags(texts, tags) if len(tags) > 0 else texts[0]
                self.logger.debug("combined text %s", text)
            if _lang == "zh":
                text = self._apply_half2full_map(text)
        invalid_characters = self._count_invalid_characters(text)
        if len(invalid_characters):
            self.logger.warning(f"found invalid characters: {invalid_characters}")
            text = self._apply_character_map(text)
        if do_homophone_replacement:
            arr, replaced_words = _fast_replace(
                self.homophones_map,
                text.encode(self.coding),
            )
            if replaced_words:
                text = arr.tobytes().decode(self.coding)
                repl_res = ", ".join([f"{_[0]}->{_[1]}" for _ in replaced_words])
                self.logger.info(f"replace homophones: {repl_res}")
        if len(invalid_characters):
            texts, tags = _split_tags(text)
            self.logger.debug("split texts %s, tags %s", str(texts), str(tags))
            texts = [self.reject_pattern.sub("", t) for t in texts]
            self.logger.debug("normed texts %s", str(texts))
            text = _combine_tags(texts, tags) if len(tags) > 0 else texts[0]
            self.logger.debug("combined text %s", text)
        return text

    def register(self, name: str, normalizer: Callable[[str], str]) -> bool:
        if name in self.normalizers:
            self.logger.warning(f"name {name} has been registered")
            return False
        try:
            val = normalizer("test string 测试字符串")
            if not isinstance(val, str):
                self.logger.warning("normalizer must have caller type (str) -> str")
                return False
        except Exception as e:
            self.logger.warning(e)
            return False
        self.normalizers[name] = normalizer
        return True

    def unregister(self, name: str):
        if name in self.normalizers:
            del self.normalizers[name]

    def destroy(self):
        del_all(self.normalizers)
        del self.homophones_map

    def _load_homophones_map(self, map_file_path: str) -> np.ndarray:
        with open(map_file_path, "r", encoding="utf-8") as f:
            homophones_map: Dict[str, str] = json.load(f)
        map = np.empty((2, len(homophones_map)), dtype=np.uint32)
        for i, k in enumerate(homophones_map.keys()):
            map[:, i] = (ord(k), ord(homophones_map[k]))
        del homophones_map
        return map

    def _count_invalid_characters(self, s: str):
        s = self.sub_pattern.sub("", s)
        non_alphabetic_chinese_chars = self.reject_pattern.findall(s)
        return set(non_alphabetic_chinese_chars)

    def _apply_half2full_map(self, text: str) -> str:
        return text.translate(self.halfwidth_2_fullwidth)

    def _apply_character_map(self, text: str) -> str:
        return text.translate(self.character_simplifier)

    def _detect_language(self, sentence: str) -> Literal["zh", "en"]:
        chinese_chars = self.chinese_char_pattern.findall(sentence)
        english_words = self.english_word_pattern.findall(sentence)

        if len(chinese_chars) > len(english_words):
            return "zh"
        else:
            return "en"