File size: 13,438 Bytes
c02bdcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import os, sys
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
now_dir = os.getcwd()
sys.path.append(now_dir)
from dataclasses import asdict
import argparse
import torch
from tqdm import tqdm
from ChatTTS.model.dvae import DVAE
from ChatTTS.config import Config
from vocos import Vocos
from vocos.pretrained import instantiate_class
import torch.jit as jit
from gpt import GPT
# disable cuda
torch.cuda.is_available = lambda: False
# add args to control which modules to export
parser = argparse.ArgumentParser()
parser.add_argument("--gpt", action="store_true", help="trace gpt")
parser.add_argument("--decoder", action="store_true", help="trace decoder")
parser.add_argument("--vocos", action="store_true", help="trace vocos")
parser.add_argument(
"--pth_dir", default="./assets", type=str, help="path to the pth model directory"
)
parser.add_argument(
"--out_dir", default="./tmp", type=str, help="path to output directory"
)
args = parser.parse_args()
chattts_config = Config()
def export_gpt():
gpt_model = GPT(gpt_config=asdict(chattts_config.gpt), use_flash_attn=False).eval()
gpt_model.from_pretrained(asdict(chattts_config.path)["gpt_ckpt_path"])
gpt_model = gpt_model.eval()
for param in gpt_model.parameters():
param.requires_grad = False
config = gpt_model.gpt.config
layers = gpt_model.gpt.layers
model_norm = gpt_model.gpt.norm
NUM_OF_LAYERS = config.num_hidden_layers
HIDDEN_SIZE = config.hidden_size
NUM_ATTENTION_HEADS = config.num_attention_heads
NUM_KEY_VALUE_HEADS = config.num_key_value_heads
HEAD_DIM = HIDDEN_SIZE // NUM_ATTENTION_HEADS # 64
TEXT_VOCAB_SIZE = gpt_model.emb_text.weight.shape[0]
AUDIO_VOCAB_SIZE = gpt_model.emb_code[0].weight.shape[0]
SEQ_LENGTH = 512
folder = os.path.join(args.out_dir, "gpt")
os.makedirs(folder, exist_ok=True)
for param in gpt_model.emb_text.parameters():
param.requires_grad = False
for param in gpt_model.emb_code.parameters():
param.requires_grad = False
for param in gpt_model.head_code.parameters():
param.requires_grad = False
for param in gpt_model.head_text.parameters():
param.requires_grad = False
class EmbeddingText(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def forward(self, input_ids):
return gpt_model.emb_text(input_ids)
def convert_embedding_text():
model = EmbeddingText()
input_ids = torch.tensor([range(SEQ_LENGTH)])
torch.onnx.export(
model,
(input_ids),
f"{folder}/embedding_text.onnx",
verbose=False,
input_names=["input_ids"],
output_names=["input_embed"],
do_constant_folding=True,
opset_version=15,
)
class EmbeddingCode(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def forward(self, input_ids):
input_ids = input_ids.unsqueeze(2).expand(
-1, -1, gpt_model.num_vq
) # for forward_first_code
code_emb = [
gpt_model.emb_code[i](input_ids[:, :, i])
for i in range(gpt_model.num_vq)
]
return torch.stack(code_emb, 2).sum(2)
def convert_embedding_code():
model = EmbeddingCode()
input_ids = torch.tensor([range(SEQ_LENGTH)])
torch.onnx.export(
model,
(input_ids),
f"{folder}/embedding_code.onnx",
verbose=False,
input_names=["input_ids"],
output_names=["input_embed"],
do_constant_folding=True,
opset_version=15,
)
class EmbeddingCodeCache(torch.nn.Module): # for forward_next_code
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def forward(self, input_ids):
code_emb = [
gpt_model.emb_code[i](input_ids[:, :, i])
for i in range(gpt_model.num_vq)
]
return torch.stack(code_emb, 2).sum(2)
def convert_embedding_code_cache():
model = EmbeddingCodeCache()
input_ids = torch.tensor(
[[[416, 290, 166, 212]]]
) # torch.tensor([[range(gpt_model.num_vq)]])
torch.onnx.export(
model,
(input_ids),
f"{folder}/embedding_code_cache.onnx",
verbose=False,
input_names=["input_ids"],
output_names=["input_embed"],
do_constant_folding=True,
opset_version=15,
)
class Block(torch.nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.layer = layers[layer_id] # LlamaDecoderLayer
self.norm = model_norm
def forward(self, hidden_states, position_ids, attention_mask):
hidden_states, past_kv = self.layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=True,
)
present_k, present_v = past_kv
if self.layer_id == NUM_OF_LAYERS - 1:
hidden_states = self.norm(hidden_states)
return hidden_states, present_k, present_v
def convert_block(layer_id):
model = Block(layer_id)
hidden_states = torch.randn((1, SEQ_LENGTH, HIDDEN_SIZE))
position_ids = torch.tensor([range(SEQ_LENGTH)], dtype=torch.long)
attention_mask = -1000 * torch.ones(
(1, 1, SEQ_LENGTH, SEQ_LENGTH), dtype=torch.float32
).triu(diagonal=1)
model(hidden_states, position_ids, attention_mask)
torch.onnx.export(
model,
(hidden_states, position_ids, attention_mask),
f"{folder}/block_{layer_id}.onnx",
verbose=False,
input_names=["input_states", "position_ids", "attention_mask"],
output_names=["hidden_states", "past_k", "past_v"],
do_constant_folding=True,
opset_version=15,
)
class BlockCache(torch.nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.layer = layers[layer_id]
self.norm = model_norm
def forward(self, hidden_states, position_ids, attention_mask, past_k, past_v):
hidden_states, past_kv = self.layer(
hidden_states,
attention_mask,
position_ids=position_ids,
past_key_value=(past_k, past_v),
use_cache=True,
)
present_k, present_v = past_kv
if self.layer_id == NUM_OF_LAYERS - 1:
hidden_states = self.norm(hidden_states)
return hidden_states, present_k, present_v
def convert_block_cache(layer_id):
model = BlockCache(layer_id)
hidden_states = torch.randn((1, 1, HIDDEN_SIZE))
position_ids = torch.tensor([range(1)], dtype=torch.long)
attention_mask = -1000 * torch.ones(
(1, 1, 1, SEQ_LENGTH + 1), dtype=torch.float32
).triu(diagonal=1)
past_k = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM))
past_v = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM))
torch.onnx.export(
model,
(hidden_states, position_ids, attention_mask, past_k, past_v),
f"{folder}/block_cache_{layer_id}.onnx",
verbose=False,
input_names=[
"input_states",
"position_ids",
"attention_mask",
"history_k",
"history_v",
],
output_names=["hidden_states", "past_k", "past_v"],
do_constant_folding=True,
opset_version=15,
)
class GreedyHead(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, m_logits):
_, token = torch.topk(m_logits.float(), 1)
return token
def convert_greedy_head_text():
model = GreedyHead()
m_logits = torch.randn(1, TEXT_VOCAB_SIZE)
torch.onnx.export(
model,
(m_logits),
f"{folder}/greedy_head_text.onnx",
verbose=False,
input_names=["m_logits"],
output_names=["token"],
do_constant_folding=True,
opset_version=15,
)
def convert_greedy_head_code():
model = GreedyHead()
m_logits = torch.randn(1, AUDIO_VOCAB_SIZE, gpt_model.num_vq)
torch.onnx.export(
model,
(m_logits),
f"{folder}/greedy_head_code.onnx",
verbose=False,
input_names=["m_logits"],
output_names=["token"],
do_constant_folding=True,
opset_version=15,
)
class LmHead_infer_text(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states):
m_logits = gpt_model.head_text(hidden_states)
return m_logits
class LmHead_infer_code(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states):
m_logits = torch.stack(
[
gpt_model.head_code[i](hidden_states)
for i in range(gpt_model.num_vq)
],
2,
)
return m_logits
def convert_lm_head_text():
model = LmHead_infer_text()
input = torch.randn(1, HIDDEN_SIZE)
torch.onnx.export(
model,
(input),
f"{folder}/lm_head_text.onnx",
verbose=False,
input_names=["hidden_states"],
output_names=["m_logits"],
do_constant_folding=True,
opset_version=15,
)
def convert_lm_head_code():
model = LmHead_infer_code()
input = torch.randn(1, HIDDEN_SIZE)
torch.onnx.export(
model,
(input),
f"{folder}/lm_head_code.onnx",
verbose=False,
input_names=["hidden_states"],
output_names=["m_logits"],
do_constant_folding=True,
opset_version=15,
)
# export models
print(f"Convert block & block_cache")
for i in tqdm(range(NUM_OF_LAYERS)):
convert_block(i)
convert_block_cache(i)
print(f"Convert embedding")
convert_embedding_text()
convert_embedding_code()
convert_embedding_code_cache()
print(f"Convert lm_head")
convert_lm_head_code()
convert_lm_head_text()
print(f"Convert greedy_head")
convert_greedy_head_text()
convert_greedy_head_code()
def export_decoder():
decoder = DVAE(
decoder_config=asdict(chattts_config.decoder),
dim=chattts_config.decoder.idim,
).eval()
decoder.load_state_dict(
torch.load(
asdict(chattts_config.path)["decoder_ckpt_path"],
weights_only=True,
mmap=True,
)
)
for param in decoder.parameters():
param.requires_grad = False
rand_input = torch.rand([1, 768, 1024], requires_grad=False)
def mydec(_inp):
return decoder(_inp, mode="decode")
jitmodel = jit.trace(mydec, [rand_input])
jit.save(jitmodel, f"{args.out_dir}/decoder_jit.pt")
def export_vocos():
feature_extractor = instantiate_class(
args=(), init=asdict(chattts_config.vocos.feature_extractor)
)
backbone = instantiate_class(args=(), init=asdict(chattts_config.vocos.backbone))
head = instantiate_class(args=(), init=asdict(chattts_config.vocos.head))
vocos = Vocos(
feature_extractor=feature_extractor, backbone=backbone, head=head
).eval()
vocos.load_state_dict(
torch.load(
asdict(chattts_config.path)["vocos_ckpt_path"], weights_only=True, mmap=True
)
)
for param in vocos.parameters():
param.requires_grad = False
rand_input = torch.rand([1, 100, 2048], requires_grad=False)
def myvocos(_inp):
# return chat.vocos.decode(_inp) # TPU cannot support the istft OP, thus it has to be moved to postprocessing
# reference: https://github.com/gemelo-ai/vocos.git
x = vocos.backbone(_inp)
x = vocos.head.out(x).transpose(1, 2)
mag, p = x.chunk(2, dim=1)
mag = torch.exp(mag)
mag = torch.clip(
mag, max=1e2
) # safeguard to prevent excessively large magnitudes
# wrapping happens here. These two lines produce real and imaginary value
x = torch.cos(p)
y = torch.sin(p)
return mag, x, y
jitmodel = jit.trace(myvocos, [rand_input])
torch.onnx.export(
jitmodel,
[rand_input],
f"{args.out_dir}/vocos_1-100-2048.onnx",
opset_version=12,
do_constant_folding=True,
)
if args.gpt:
export_gpt()
if args.decoder:
export_decoder()
if args.vocos:
export_vocos()
print("Done. Please check the files in", args.out_dir)
|