File size: 13,438 Bytes
c02bdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import os, sys

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

now_dir = os.getcwd()
sys.path.append(now_dir)

from dataclasses import asdict
import argparse
import torch
from tqdm import tqdm
from ChatTTS.model.dvae import DVAE
from ChatTTS.config import Config
from vocos import Vocos
from vocos.pretrained import instantiate_class
import torch.jit as jit

from gpt import GPT

# disable cuda
torch.cuda.is_available = lambda: False

# add args to control which modules to export
parser = argparse.ArgumentParser()
parser.add_argument("--gpt", action="store_true", help="trace gpt")
parser.add_argument("--decoder", action="store_true", help="trace decoder")
parser.add_argument("--vocos", action="store_true", help="trace vocos")
parser.add_argument(
    "--pth_dir", default="./assets", type=str, help="path to the pth model directory"
)
parser.add_argument(
    "--out_dir", default="./tmp", type=str, help="path to output directory"
)

args = parser.parse_args()
chattts_config = Config()


def export_gpt():
    gpt_model = GPT(gpt_config=asdict(chattts_config.gpt), use_flash_attn=False).eval()
    gpt_model.from_pretrained(asdict(chattts_config.path)["gpt_ckpt_path"])
    gpt_model = gpt_model.eval()
    for param in gpt_model.parameters():
        param.requires_grad = False

    config = gpt_model.gpt.config
    layers = gpt_model.gpt.layers
    model_norm = gpt_model.gpt.norm

    NUM_OF_LAYERS = config.num_hidden_layers
    HIDDEN_SIZE = config.hidden_size
    NUM_ATTENTION_HEADS = config.num_attention_heads
    NUM_KEY_VALUE_HEADS = config.num_key_value_heads
    HEAD_DIM = HIDDEN_SIZE // NUM_ATTENTION_HEADS  # 64
    TEXT_VOCAB_SIZE = gpt_model.emb_text.weight.shape[0]
    AUDIO_VOCAB_SIZE = gpt_model.emb_code[0].weight.shape[0]
    SEQ_LENGTH = 512

    folder = os.path.join(args.out_dir, "gpt")
    os.makedirs(folder, exist_ok=True)

    for param in gpt_model.emb_text.parameters():
        param.requires_grad = False

    for param in gpt_model.emb_code.parameters():
        param.requires_grad = False

    for param in gpt_model.head_code.parameters():
        param.requires_grad = False

    for param in gpt_model.head_text.parameters():
        param.requires_grad = False

    class EmbeddingText(torch.nn.Module):
        def __init__(self, *args, **kwargs) -> None:
            super().__init__(*args, **kwargs)

        def forward(self, input_ids):
            return gpt_model.emb_text(input_ids)

    def convert_embedding_text():
        model = EmbeddingText()
        input_ids = torch.tensor([range(SEQ_LENGTH)])

        torch.onnx.export(
            model,
            (input_ids),
            f"{folder}/embedding_text.onnx",
            verbose=False,
            input_names=["input_ids"],
            output_names=["input_embed"],
            do_constant_folding=True,
            opset_version=15,
        )

    class EmbeddingCode(torch.nn.Module):
        def __init__(self, *args, **kwargs) -> None:
            super().__init__(*args, **kwargs)

        def forward(self, input_ids):
            input_ids = input_ids.unsqueeze(2).expand(
                -1, -1, gpt_model.num_vq
            )  # for forward_first_code
            code_emb = [
                gpt_model.emb_code[i](input_ids[:, :, i])
                for i in range(gpt_model.num_vq)
            ]
            return torch.stack(code_emb, 2).sum(2)

    def convert_embedding_code():
        model = EmbeddingCode()
        input_ids = torch.tensor([range(SEQ_LENGTH)])

        torch.onnx.export(
            model,
            (input_ids),
            f"{folder}/embedding_code.onnx",
            verbose=False,
            input_names=["input_ids"],
            output_names=["input_embed"],
            do_constant_folding=True,
            opset_version=15,
        )

    class EmbeddingCodeCache(torch.nn.Module):  # for forward_next_code
        def __init__(self, *args, **kwargs) -> None:
            super().__init__(*args, **kwargs)

        def forward(self, input_ids):
            code_emb = [
                gpt_model.emb_code[i](input_ids[:, :, i])
                for i in range(gpt_model.num_vq)
            ]
            return torch.stack(code_emb, 2).sum(2)

    def convert_embedding_code_cache():
        model = EmbeddingCodeCache()
        input_ids = torch.tensor(
            [[[416, 290, 166, 212]]]
        )  # torch.tensor([[range(gpt_model.num_vq)]])
        torch.onnx.export(
            model,
            (input_ids),
            f"{folder}/embedding_code_cache.onnx",
            verbose=False,
            input_names=["input_ids"],
            output_names=["input_embed"],
            do_constant_folding=True,
            opset_version=15,
        )

    class Block(torch.nn.Module):
        def __init__(self, layer_id):
            super().__init__()
            self.layer_id = layer_id
            self.layer = layers[layer_id]  # LlamaDecoderLayer
            self.norm = model_norm

        def forward(self, hidden_states, position_ids, attention_mask):
            hidden_states, past_kv = self.layer(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                use_cache=True,
            )
            present_k, present_v = past_kv
            if self.layer_id == NUM_OF_LAYERS - 1:
                hidden_states = self.norm(hidden_states)
            return hidden_states, present_k, present_v

    def convert_block(layer_id):
        model = Block(layer_id)
        hidden_states = torch.randn((1, SEQ_LENGTH, HIDDEN_SIZE))
        position_ids = torch.tensor([range(SEQ_LENGTH)], dtype=torch.long)
        attention_mask = -1000 * torch.ones(
            (1, 1, SEQ_LENGTH, SEQ_LENGTH), dtype=torch.float32
        ).triu(diagonal=1)
        model(hidden_states, position_ids, attention_mask)
        torch.onnx.export(
            model,
            (hidden_states, position_ids, attention_mask),
            f"{folder}/block_{layer_id}.onnx",
            verbose=False,
            input_names=["input_states", "position_ids", "attention_mask"],
            output_names=["hidden_states", "past_k", "past_v"],
            do_constant_folding=True,
            opset_version=15,
        )

    class BlockCache(torch.nn.Module):

        def __init__(self, layer_id):
            super().__init__()
            self.layer_id = layer_id
            self.layer = layers[layer_id]
            self.norm = model_norm

        def forward(self, hidden_states, position_ids, attention_mask, past_k, past_v):
            hidden_states, past_kv = self.layer(
                hidden_states,
                attention_mask,
                position_ids=position_ids,
                past_key_value=(past_k, past_v),
                use_cache=True,
            )
            present_k, present_v = past_kv
            if self.layer_id == NUM_OF_LAYERS - 1:
                hidden_states = self.norm(hidden_states)
            return hidden_states, present_k, present_v

    def convert_block_cache(layer_id):
        model = BlockCache(layer_id)
        hidden_states = torch.randn((1, 1, HIDDEN_SIZE))
        position_ids = torch.tensor([range(1)], dtype=torch.long)
        attention_mask = -1000 * torch.ones(
            (1, 1, 1, SEQ_LENGTH + 1), dtype=torch.float32
        ).triu(diagonal=1)
        past_k = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM))
        past_v = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM))

        torch.onnx.export(
            model,
            (hidden_states, position_ids, attention_mask, past_k, past_v),
            f"{folder}/block_cache_{layer_id}.onnx",
            verbose=False,
            input_names=[
                "input_states",
                "position_ids",
                "attention_mask",
                "history_k",
                "history_v",
            ],
            output_names=["hidden_states", "past_k", "past_v"],
            do_constant_folding=True,
            opset_version=15,
        )

    class GreedyHead(torch.nn.Module):

        def __init__(self):
            super().__init__()

        def forward(self, m_logits):
            _, token = torch.topk(m_logits.float(), 1)
            return token

    def convert_greedy_head_text():
        model = GreedyHead()
        m_logits = torch.randn(1, TEXT_VOCAB_SIZE)

        torch.onnx.export(
            model,
            (m_logits),
            f"{folder}/greedy_head_text.onnx",
            verbose=False,
            input_names=["m_logits"],
            output_names=["token"],
            do_constant_folding=True,
            opset_version=15,
        )

    def convert_greedy_head_code():
        model = GreedyHead()
        m_logits = torch.randn(1, AUDIO_VOCAB_SIZE, gpt_model.num_vq)

        torch.onnx.export(
            model,
            (m_logits),
            f"{folder}/greedy_head_code.onnx",
            verbose=False,
            input_names=["m_logits"],
            output_names=["token"],
            do_constant_folding=True,
            opset_version=15,
        )

    class LmHead_infer_text(torch.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, hidden_states):
            m_logits = gpt_model.head_text(hidden_states)
            return m_logits

    class LmHead_infer_code(torch.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, hidden_states):
            m_logits = torch.stack(
                [
                    gpt_model.head_code[i](hidden_states)
                    for i in range(gpt_model.num_vq)
                ],
                2,
            )
            return m_logits

    def convert_lm_head_text():
        model = LmHead_infer_text()
        input = torch.randn(1, HIDDEN_SIZE)

        torch.onnx.export(
            model,
            (input),
            f"{folder}/lm_head_text.onnx",
            verbose=False,
            input_names=["hidden_states"],
            output_names=["m_logits"],
            do_constant_folding=True,
            opset_version=15,
        )

    def convert_lm_head_code():
        model = LmHead_infer_code()
        input = torch.randn(1, HIDDEN_SIZE)
        torch.onnx.export(
            model,
            (input),
            f"{folder}/lm_head_code.onnx",
            verbose=False,
            input_names=["hidden_states"],
            output_names=["m_logits"],
            do_constant_folding=True,
            opset_version=15,
        )

    # export models
    print(f"Convert block & block_cache")
    for i in tqdm(range(NUM_OF_LAYERS)):
        convert_block(i)
        convert_block_cache(i)

    print(f"Convert embedding")
    convert_embedding_text()
    convert_embedding_code()
    convert_embedding_code_cache()

    print(f"Convert lm_head")
    convert_lm_head_code()
    convert_lm_head_text()

    print(f"Convert greedy_head")
    convert_greedy_head_text()
    convert_greedy_head_code()


def export_decoder():
    decoder = DVAE(
        decoder_config=asdict(chattts_config.decoder),
        dim=chattts_config.decoder.idim,
    ).eval()
    decoder.load_state_dict(
        torch.load(
            asdict(chattts_config.path)["decoder_ckpt_path"],
            weights_only=True,
            mmap=True,
        )
    )

    for param in decoder.parameters():
        param.requires_grad = False
    rand_input = torch.rand([1, 768, 1024], requires_grad=False)

    def mydec(_inp):
        return decoder(_inp, mode="decode")

    jitmodel = jit.trace(mydec, [rand_input])
    jit.save(jitmodel, f"{args.out_dir}/decoder_jit.pt")


def export_vocos():
    feature_extractor = instantiate_class(
        args=(), init=asdict(chattts_config.vocos.feature_extractor)
    )
    backbone = instantiate_class(args=(), init=asdict(chattts_config.vocos.backbone))
    head = instantiate_class(args=(), init=asdict(chattts_config.vocos.head))
    vocos = Vocos(
        feature_extractor=feature_extractor, backbone=backbone, head=head
    ).eval()
    vocos.load_state_dict(
        torch.load(
            asdict(chattts_config.path)["vocos_ckpt_path"], weights_only=True, mmap=True
        )
    )

    for param in vocos.parameters():
        param.requires_grad = False
    rand_input = torch.rand([1, 100, 2048], requires_grad=False)

    def myvocos(_inp):
        # return chat.vocos.decode(_inp) # TPU cannot support the istft OP, thus it has to be moved to postprocessing
        # reference: https://github.com/gemelo-ai/vocos.git
        x = vocos.backbone(_inp)
        x = vocos.head.out(x).transpose(1, 2)
        mag, p = x.chunk(2, dim=1)
        mag = torch.exp(mag)
        mag = torch.clip(
            mag, max=1e2
        )  # safeguard to prevent excessively large magnitudes
        # wrapping happens here. These two lines produce real and imaginary value
        x = torch.cos(p)
        y = torch.sin(p)
        return mag, x, y

    jitmodel = jit.trace(myvocos, [rand_input])
    torch.onnx.export(
        jitmodel,
        [rand_input],
        f"{args.out_dir}/vocos_1-100-2048.onnx",
        opset_version=12,
        do_constant_folding=True,
    )


if args.gpt:
    export_gpt()

if args.decoder:
    export_decoder()

if args.vocos:
    export_vocos()

print("Done. Please check the files in", args.out_dir)