File size: 21,644 Bytes
c02bdcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import os
import logging
import tempfile
from dataclasses import dataclass, asdict
from typing import Literal, Optional, List, Tuple, Dict, Union
from json import load
from pathlib import Path
import numpy as np
import torch
from vocos import Vocos
from vocos.pretrained import instantiate_class
from huggingface_hub import snapshot_download
from .config import Config
from .model import DVAE, Embed, GPT, gen_logits, Tokenizer, Speaker
from .utils import (
check_all_assets,
download_all_assets,
select_device,
get_latest_modified_file,
del_all,
)
from .utils import logger as utils_logger
from .norm import Normalizer
class Chat:
def __init__(self, logger=logging.getLogger(__name__)):
self.logger = logger
utils_logger.set_logger(logger)
self.config = Config()
self.normalizer = Normalizer(
os.path.join(os.path.dirname(__file__), "res", "homophones_map.json"),
logger,
)
with open(
os.path.join(os.path.dirname(__file__), "res", "sha256_map.json")
) as f:
self.sha256_map: Dict[str, str] = load(f)
self.context = GPT.Context()
def has_loaded(self, use_decoder=False):
not_finish = False
check_list = ["vocos", "gpt", "tokenizer", "embed"]
if use_decoder:
check_list.append("decoder")
else:
check_list.append("dvae")
for module in check_list:
if not hasattr(self, module):
self.logger.warning(f"{module} not initialized.")
not_finish = True
return not not_finish
def download_models(
self,
source: Literal["huggingface", "local", "custom"] = "local",
force_redownload=False,
custom_path: Optional[torch.serialization.FILE_LIKE] = None,
) -> Optional[str]:
if source == "local":
download_path = os.getcwd()
if (
not check_all_assets(Path(download_path), self.sha256_map, update=True)
or force_redownload
):
with tempfile.TemporaryDirectory() as tmp:
download_all_assets(tmpdir=tmp)
if not check_all_assets(
Path(download_path), self.sha256_map, update=False
):
self.logger.error(
"download to local path %s failed.", download_path
)
return None
elif source == "huggingface":
hf_home = os.getenv("HF_HOME", os.path.expanduser("~/.cache/huggingface"))
try:
download_path = get_latest_modified_file(
os.path.join(hf_home, "hub/models--2Noise--ChatTTS/snapshots")
)
except:
download_path = None
if download_path is None or force_redownload:
self.logger.log(
logging.INFO,
f"download from HF: https://huggingface.co/2Noise/ChatTTS",
)
try:
download_path = snapshot_download(
repo_id="2Noise/ChatTTS",
allow_patterns=["*.pt", "*.yaml", "*.json", "*.safetensors"],
)
except:
download_path = None
else:
self.logger.log(
logging.INFO, f"load latest snapshot from cache: {download_path}"
)
if download_path is None:
self.logger.error("download from huggingface failed.")
return None
elif source == "custom":
self.logger.log(logging.INFO, f"try to load from local: {custom_path}")
if not check_all_assets(Path(custom_path), self.sha256_map, update=False):
self.logger.error("check models in custom path %s failed.", custom_path)
return None
download_path = custom_path
return download_path
def load(
self,
source: Literal["huggingface", "local", "custom"] = "local",
force_redownload=False,
compile: bool = False,
custom_path: Optional[torch.serialization.FILE_LIKE] = None,
device: Optional[torch.device] = None,
coef: Optional[torch.Tensor] = None,
use_flash_attn=False,
use_vllm=False,
experimental: bool = False,
) -> bool:
download_path = self.download_models(source, force_redownload, custom_path)
if download_path is None:
return False
return self._load(
device=device,
compile=compile,
coef=coef,
use_flash_attn=use_flash_attn,
use_vllm=use_vllm,
experimental=experimental,
**{
k: os.path.join(download_path, v)
for k, v in asdict(self.config.path).items()
},
)
def unload(self):
logger = self.logger
self.normalizer.destroy()
del self.normalizer
del self.sha256_map
del_list = ["vocos", "gpt", "decoder", "dvae", "tokenizer", "embed"]
for module in del_list:
if hasattr(self, module):
delattr(self, module)
self.__init__(logger)
def sample_random_speaker(self) -> str:
return self.speaker.sample_random()
def sample_audio_speaker(self, wav: Union[np.ndarray, torch.Tensor]) -> str:
return self.speaker.encode_prompt(self.dvae.sample_audio(wav))
@dataclass(repr=False, eq=False)
class RefineTextParams:
prompt: str = ""
top_P: float = 0.7
top_K: int = 20
temperature: float = 0.7
repetition_penalty: float = 1.0
max_new_token: int = 384
min_new_token: int = 0
show_tqdm: bool = True
ensure_non_empty: bool = True
manual_seed: Optional[int] = None
@dataclass(repr=False, eq=False)
class InferCodeParams(RefineTextParams):
prompt: str = "[speed_5]"
spk_emb: Optional[str] = None
spk_smp: Optional[str] = None
txt_smp: Optional[str] = None
temperature: float = 0.3
repetition_penalty: float = 1.05
max_new_token: int = 2048
stream_batch: int = 24
stream_speed: int = 12000
pass_first_n_batches: int = 2
def infer(
self,
text,
stream=False,
lang=None,
skip_refine_text=False,
refine_text_only=False,
use_decoder=True,
do_text_normalization=True,
do_homophone_replacement=True,
params_refine_text=RefineTextParams(),
params_infer_code=InferCodeParams(),
):
self.context.set(False)
res_gen = self._infer(
text,
stream,
lang,
skip_refine_text,
refine_text_only,
use_decoder,
do_text_normalization,
do_homophone_replacement,
params_refine_text,
params_infer_code,
)
if stream:
return res_gen
else:
return next(res_gen)
def interrupt(self):
self.context.set(True)
@torch.no_grad()
def _load(
self,
vocos_ckpt_path: str = None,
dvae_ckpt_path: str = None,
gpt_ckpt_path: str = None,
embed_path: str = None,
decoder_ckpt_path: str = None,
tokenizer_path: str = None,
device: Optional[torch.device] = None,
compile: bool = False,
coef: Optional[str] = None,
use_flash_attn=False,
use_vllm=False,
experimental: bool = False,
):
if device is None:
device = select_device(experimental=experimental)
self.logger.info("use device %s", str(device))
self.device = device
self.device_gpt = device if "mps" not in str(device) else torch.device("cpu")
self.compile = compile
feature_extractor = instantiate_class(
args=(), init=asdict(self.config.vocos.feature_extractor)
)
backbone = instantiate_class(args=(), init=asdict(self.config.vocos.backbone))
head = instantiate_class(args=(), init=asdict(self.config.vocos.head))
vocos = (
Vocos(feature_extractor=feature_extractor, backbone=backbone, head=head)
.to(
# vocos on mps will crash, use cpu fallback
"cpu"
if "mps" in str(device)
else device
)
.eval()
)
assert vocos_ckpt_path, "vocos_ckpt_path should not be None"
vocos.load_state_dict(torch.load(vocos_ckpt_path, weights_only=True, mmap=True))
self.vocos = vocos
self.logger.log(logging.INFO, "vocos loaded.")
dvae = (
DVAE(
decoder_config=asdict(self.config.dvae.decoder),
encoder_config=asdict(self.config.dvae.encoder),
vq_config=asdict(self.config.dvae.vq),
dim=self.config.dvae.decoder.idim,
coef=coef,
device=device,
)
.to(device)
.eval()
)
coef = str(dvae)
assert dvae_ckpt_path, "dvae_ckpt_path should not be None"
dvae.load_state_dict(torch.load(dvae_ckpt_path, weights_only=True, mmap=True))
self.dvae = dvae
self.logger.log(logging.INFO, "dvae loaded.")
embed = Embed(
self.config.embed.hidden_size,
self.config.embed.num_audio_tokens,
self.config.embed.num_text_tokens,
self.config.embed.num_vq,
)
embed.from_pretrained(embed_path, device=device)
self.embed = embed.to(device)
self.logger.log(logging.INFO, "embed loaded.")
gpt = GPT(
gpt_config=asdict(self.config.gpt),
embed=self.embed,
use_flash_attn=use_flash_attn,
use_vllm=use_vllm,
device=device,
device_gpt=self.device_gpt,
logger=self.logger,
).eval()
assert gpt_ckpt_path, "gpt_ckpt_path should not be None"
gpt.from_pretrained(gpt_ckpt_path, embed_path, experimental=experimental)
gpt.prepare(compile=compile and "cuda" in str(device))
self.gpt = gpt
self.logger.log(logging.INFO, "gpt loaded.")
self.speaker = Speaker(
self.config.gpt.hidden_size, self.config.spk_stat, device
)
self.logger.log(logging.INFO, "speaker loaded.")
decoder = (
DVAE(
decoder_config=asdict(self.config.decoder),
dim=self.config.decoder.idim,
coef=coef,
device=device,
)
.to(device)
.eval()
)
coef = str(decoder)
assert decoder_ckpt_path, "decoder_ckpt_path should not be None"
decoder.load_state_dict(
torch.load(decoder_ckpt_path, weights_only=True, mmap=True)
)
self.decoder = decoder
self.logger.log(logging.INFO, "decoder loaded.")
if tokenizer_path:
self.tokenizer = Tokenizer(tokenizer_path)
self.logger.log(logging.INFO, "tokenizer loaded.")
self.coef = coef
return self.has_loaded()
def _infer(
self,
text,
stream=False,
lang=None,
skip_refine_text=False,
refine_text_only=False,
use_decoder=True,
do_text_normalization=True,
do_homophone_replacement=True,
params_refine_text=RefineTextParams(),
params_infer_code=InferCodeParams(),
):
assert self.has_loaded(use_decoder=use_decoder)
if not isinstance(text, list):
text = [text]
text = [
self.normalizer(
t,
do_text_normalization,
do_homophone_replacement,
lang,
)
for t in text
]
self.logger.debug("normed texts %s", str(text))
if not skip_refine_text:
refined = self._refine_text(
text,
self.device,
params_refine_text,
)
text_tokens = refined.ids
text_tokens = [i[i.less(self.tokenizer.break_0_ids)] for i in text_tokens]
text = self.tokenizer.decode(text_tokens)
refined.destroy()
if refine_text_only:
yield text
return
if stream:
length = 0
pass_batch_count = 0
for result in self._infer_code(
text,
stream,
self.device,
use_decoder,
params_infer_code,
):
wavs = self._decode_to_wavs(
result.hiddens if use_decoder else result.ids,
use_decoder,
)
result.destroy()
if stream:
pass_batch_count += 1
if pass_batch_count <= params_infer_code.pass_first_n_batches:
continue
a = length
b = a + params_infer_code.stream_speed
if b > wavs.shape[1]:
b = wavs.shape[1]
new_wavs = wavs[:, a:b]
length = b
yield new_wavs
else:
yield wavs
if stream:
new_wavs = wavs[:, length:]
# Identify rows with non-zero elements using np.any
# keep_rows = np.any(array != 0, axis=1)
keep_cols = np.sum(new_wavs != 0, axis=0) > 0
# Filter both rows and columns using slicing
yield new_wavs[:][:, keep_cols]
@torch.inference_mode()
def _vocos_decode(self, spec: torch.Tensor) -> np.ndarray:
if "mps" in str(self.device):
return self.vocos.decode(spec.cpu()).cpu().numpy()
else:
return self.vocos.decode(spec).cpu().numpy()
@torch.inference_mode()
def _decode_to_wavs(
self,
result_list: List[torch.Tensor],
use_decoder: bool,
):
decoder = self.decoder if use_decoder else self.dvae
max_x_len = -1
if len(result_list) == 0:
return np.array([], dtype=np.float32)
for result in result_list:
if result.size(0) > max_x_len:
max_x_len = result.size(0)
batch_result = torch.zeros(
(len(result_list), result_list[0].size(1), max_x_len),
dtype=result_list[0].dtype,
device=result_list[0].device,
)
for i in range(len(result_list)):
src = result_list[i]
batch_result[i].narrow(1, 0, src.size(0)).copy_(src.permute(1, 0))
del src
del_all(result_list)
mel_specs = decoder(batch_result)
del batch_result
wavs = self._vocos_decode(mel_specs)
del mel_specs
return wavs
@torch.no_grad()
def _infer_code(
self,
text: Tuple[List[str], str],
stream: bool,
device: torch.device,
return_hidden: bool,
params: InferCodeParams,
):
gpt = self.gpt
if not isinstance(text, list):
text = [text]
assert len(text), "text should not be empty"
if not isinstance(params.temperature, list):
temperature = [params.temperature] * self.config.gpt.num_vq
else:
temperature = params.temperature
input_ids, attention_mask, text_mask = self.tokenizer.encode(
self.speaker.decorate_code_prompts(
text,
params.prompt,
params.txt_smp,
params.spk_emb,
),
self.config.gpt.num_vq,
prompt=(
self.speaker.decode_prompt(params.spk_smp)
if params.spk_smp is not None
else None
),
device=self.device_gpt,
)
start_idx = input_ids.shape[-2]
num_code = self.config.gpt.num_audio_tokens - 1
logits_warpers, logits_processors = gen_logits(
num_code=num_code,
top_P=params.top_P,
top_K=params.top_K,
repetition_penalty=params.repetition_penalty,
)
if gpt.is_vllm:
from .model.velocity import SamplingParams
sample_params = SamplingParams(
temperature=temperature,
max_new_token=params.max_new_token,
max_tokens=8192,
min_new_token=params.min_new_token,
logits_processors=(logits_processors, logits_warpers),
eos_token=num_code,
infer_text=False,
start_idx=start_idx,
)
input_ids = [i.tolist() for i in input_ids]
result = gpt.llm.generate(
None,
sample_params,
input_ids,
)
token_ids = []
hidden_states = []
for i in result:
token_ids.append(torch.tensor(i.outputs[0].token_ids))
hidden_states.append(
i.outputs[0].hidden_states.to(torch.float32).to(self.device)
)
del text_mask, input_ids
return [
GPT.GenerationOutputs(
ids=token_ids,
hiddens=hidden_states,
attentions=[],
),
]
emb = self.embed(input_ids, text_mask)
del text_mask
if params.spk_emb is not None:
self.speaker.apply(
emb,
params.spk_emb,
input_ids,
self.tokenizer.spk_emb_ids,
self.gpt.device_gpt,
)
result = gpt.generate(
emb,
input_ids,
temperature=torch.tensor(temperature, device=device),
eos_token=num_code,
attention_mask=attention_mask,
max_new_token=params.max_new_token,
min_new_token=params.min_new_token,
logits_processors=(*logits_processors, *logits_warpers),
infer_text=False,
return_hidden=return_hidden,
stream=stream,
show_tqdm=params.show_tqdm,
ensure_non_empty=params.ensure_non_empty,
stream_batch=params.stream_batch,
manual_seed=params.manual_seed,
context=self.context,
)
del emb, input_ids
return result
@torch.no_grad()
def _refine_text(
self,
text: str,
device: torch.device,
params: RefineTextParams,
):
gpt = self.gpt
if not isinstance(text, list):
text = [text]
input_ids, attention_mask, text_mask = self.tokenizer.encode(
self.speaker.decorate_text_prompts(text, params.prompt),
self.config.gpt.num_vq,
device=self.device_gpt,
)
logits_warpers, logits_processors = gen_logits(
num_code=self.tokenizer.len,
top_P=params.top_P,
top_K=params.top_K,
repetition_penalty=params.repetition_penalty,
)
if gpt.is_vllm:
from .model.velocity import SamplingParams
sample_params = SamplingParams(
repetition_penalty=params.repetition_penalty,
temperature=params.temperature,
top_p=params.top_P,
top_k=params.top_K,
max_new_token=params.max_new_token,
max_tokens=8192,
min_new_token=params.min_new_token,
logits_processors=(logits_processors, logits_warpers),
eos_token=self.tokenizer.eos_token,
infer_text=True,
start_idx=input_ids.shape[-2],
)
input_ids_list = [i.tolist() for i in input_ids]
del input_ids
result = gpt.llm.generate(
None, sample_params, input_ids_list, params.show_tqdm
)
token_ids = []
hidden_states = []
for i in result:
token_ids.append(torch.tensor(i.outputs[0].token_ids))
hidden_states.append(i.outputs[0].hidden_states)
del text_mask, input_ids_list, result
return GPT.GenerationOutputs(
ids=token_ids,
hiddens=hidden_states,
attentions=[],
)
emb = self.embed(input_ids, text_mask)
del text_mask
result = next(
gpt.generate(
emb,
input_ids,
temperature=torch.tensor([params.temperature], device=device),
eos_token=self.tokenizer.eos_token,
attention_mask=attention_mask,
max_new_token=params.max_new_token,
min_new_token=params.min_new_token,
logits_processors=(*logits_processors, *logits_warpers),
infer_text=True,
stream=False,
show_tqdm=params.show_tqdm,
ensure_non_empty=params.ensure_non_empty,
manual_seed=params.manual_seed,
context=self.context,
)
)
del emb, input_ids
return result
|