File size: 22,425 Bytes
c02bdcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import platform
from dataclasses import dataclass
import logging
from typing import Union, List, Optional, Tuple, Callable
import gc
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as P
from tqdm import tqdm
from transformers import LlamaModel, LlamaConfig
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.utils import is_flash_attn_2_available
from ..utils import del_all
from .embed import Embed
class GPT(nn.Module):
def __init__(
self,
gpt_config: dict,
embed: Embed,
use_flash_attn=False,
use_vllm=False,
device=torch.device("cpu"),
device_gpt=torch.device("cpu"),
logger=logging.getLogger(__name__),
):
super().__init__()
self.logger = logger
self.device = device
self.device_gpt = device_gpt
self.generator = torch.Generator(device=device)
self.num_vq = int(gpt_config["num_vq"])
self.num_audio_tokens = int(gpt_config["num_audio_tokens"])
self.num_text_tokens = int(gpt_config["num_text_tokens"])
self.use_flash_attn = use_flash_attn
self.is_te_llama = False
self.is_vllm = use_vllm
if self.is_vllm:
return
self.llama_config = self._build_llama_config(gpt_config)
self.emb_code = [ec.__call__ for ec in embed.emb_code]
self.emb_text = embed.emb_text.__call__
self.head_text = embed.head_text.__call__
self.head_code = [hc.__call__ for hc in embed.head_code]
def from_pretrained(
self, gpt_folder: str, embed_file_path: str, experimental=False
):
if self.is_vllm and platform.system().lower() == "linux":
from .velocity import LLM
self.llm = LLM(
model=gpt_folder,
num_audio_tokens=self.num_audio_tokens,
num_text_tokens=self.num_text_tokens,
post_model_path=embed_file_path,
)
self.logger.info("vLLM model loaded")
return
self.gpt: LlamaModel = LlamaModel.from_pretrained(gpt_folder).to(
self.device_gpt
)
del self.gpt.embed_tokens
if (
experimental
and "cuda" in str(self.device_gpt)
and platform.system().lower() == "linux"
): # is TELlamaModel
try:
from .cuda import TELlamaModel
self.logger.warning(
"Linux with CUDA, try NVIDIA accelerated TELlamaModel because experimental is enabled"
)
state_dict = self.gpt.state_dict()
vanilla = TELlamaModel.from_state_dict(state_dict, self.llama_config)
# Force mem release. Taken from huggingface code
del state_dict, self.gpt
gc.collect()
self.gpt = vanilla
self.is_te_llama = True
except Exception as e:
self.logger.warning(
f"use default LlamaModel for importing TELlamaModel error: {e}"
)
class Context:
def __init__(self):
self._interrupt = False
def set(self, v: bool):
self._interrupt = v
def get(self) -> bool:
return self._interrupt
def _build_llama_config(
self,
config: dict,
) -> Tuple[LlamaModel, LlamaConfig]:
if self.use_flash_attn and is_flash_attn_2_available():
llama_config = LlamaConfig(
**config,
attn_implementation="flash_attention_2",
)
self.logger.warning(
"enabling flash_attention_2 may make gpt be even slower"
)
else:
llama_config = LlamaConfig(**config)
return llama_config
def prepare(self, compile=False):
if self.use_flash_attn and is_flash_attn_2_available():
self.gpt = self.gpt.to(dtype=torch.float16)
if compile and not self.is_te_llama and not self.is_vllm:
try:
self.compile(backend="inductor", dynamic=True)
self.gpt.compile(backend="inductor", dynamic=True)
except RuntimeError as e:
self.logger.warning(f"compile failed: {e}. fallback to normal mode.")
@dataclass(repr=False, eq=False)
class _GenerationInputs:
position_ids: torch.Tensor
cache_position: torch.Tensor
use_cache: bool
input_ids: Optional[torch.Tensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
attention_mask: Optional[torch.Tensor] = None
inputs_embeds: Optional[torch.Tensor] = None
def to(self, device: torch.device, dtype: torch.dtype):
if self.attention_mask is not None:
self.attention_mask = self.attention_mask.to(device, dtype=dtype)
if self.position_ids is not None:
self.position_ids = self.position_ids.to(device, dtype=dtype)
if self.inputs_embeds is not None:
self.inputs_embeds = self.inputs_embeds.to(device, dtype=dtype)
if self.cache_position is not None:
self.cache_position = self.cache_position.to(device, dtype=dtype)
@torch.no_grad()
def _prepare_generation_inputs(
self,
input_ids: torch.Tensor,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache=True,
) -> _GenerationInputs:
# With static cache, the `past_key_values` is None
# TODO joao: standardize interface for the different Cache classes and remove of this if
has_static_cache = False
if past_key_values is None:
if hasattr(self.gpt.layers[0], "self_attn"):
past_key_values = getattr(
self.gpt.layers[0].self_attn, "past_key_value", None
)
has_static_cache = past_key_values is not None
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
past_length = (
int(cache_position[0])
if cache_position is not None
else past_key_values.get_seq_length()
)
max_cache_length = past_key_values.get_max_length()
cache_length = (
past_length
if max_cache_length is None
else min(max_cache_length, past_length)
)
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if (
attention_mask is not None
and attention_mask.shape[1] > input_ids.shape[1]
):
start = attention_mask.shape[1] - past_length
input_ids = input_ids.narrow(1, -start, start)
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids.narrow(
1, past_length, input_ids.size(1) - past_length
)
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask.narrow(
1, -max_cache_length, max_cache_length
)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask.eq(0), 1)
if past_key_values:
position_ids = position_ids.narrow(
1, -input_ids.shape[1], input_ids.shape[1]
)
input_length = (
position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
)
if cache_position is None:
cache_position = torch.arange(
past_length, past_length + input_length, device=input_ids.device
)
else:
cache_position = cache_position.narrow(0, -input_length, input_length)
if has_static_cache:
past_key_values = None
model_inputs = self._GenerationInputs(
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs.inputs_embeds = inputs_embeds
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs.input_ids = input_ids.contiguous()
model_inputs.past_key_values = past_key_values
model_inputs.attention_mask = attention_mask
return model_inputs
@dataclass(repr=False, eq=False)
class GenerationOutputs:
ids: List[torch.Tensor]
attentions: List[Optional[Tuple[torch.FloatTensor, ...]]]
hiddens: List[torch.Tensor]
def destroy(self):
del_all(self.ids)
del_all(self.attentions)
del_all(self.hiddens)
@torch.no_grad()
def _prepare_generation_outputs(
self,
inputs_ids: torch.Tensor,
start_idx: int,
end_idx: torch.Tensor,
attentions: List[Optional[Tuple[torch.FloatTensor, ...]]],
hiddens: List[torch.Tensor],
infer_text: bool,
) -> GenerationOutputs:
inputs_ids = [
inputs_ids[idx].narrow(0, start_idx, i) for idx, i in enumerate(end_idx)
]
if infer_text:
inputs_ids = [i.narrow(1, 0, 1).squeeze_(1) for i in inputs_ids]
if len(hiddens) > 0:
hiddens = torch.stack(hiddens, 1)
hiddens = [
hiddens[idx].narrow(0, 0, i) for idx, i in enumerate(end_idx.int())
]
return self.GenerationOutputs(
ids=inputs_ids,
attentions=attentions,
hiddens=hiddens,
)
@torch.no_grad()
def generate(
self,
emb: torch.Tensor,
inputs_ids: torch.Tensor,
temperature: torch.Tensor,
eos_token: Union[int, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
max_new_token=2048,
min_new_token=0,
logits_processors: Tuple[
Callable[[torch.LongTensor, torch.FloatTensor], torch.FloatTensor]
] = (),
infer_text=False,
return_attn=False,
return_hidden=False,
stream=False,
show_tqdm=True,
ensure_non_empty=True,
stream_batch=24,
manual_seed: Optional[int] = None,
context=Context(),
):
attentions: List[Optional[Tuple[torch.FloatTensor, ...]]] = []
hiddens = []
stream_iter = 0
start_idx, end_idx = inputs_ids.shape[1], torch.zeros(
inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long
)
finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool()
old_temperature = temperature
temperature = (
temperature.unsqueeze(0)
.expand(inputs_ids.shape[0], -1)
.contiguous()
.view(-1, 1)
)
attention_mask_cache = torch.ones(
(
inputs_ids.shape[0],
inputs_ids.shape[1] + max_new_token,
),
dtype=torch.bool,
device=inputs_ids.device,
)
if attention_mask is not None:
attention_mask_cache.narrow(1, 0, attention_mask.shape[1]).copy_(
attention_mask
)
progress = inputs_ids.size(1)
# pre-allocate inputs_ids
inputs_ids_buf = torch.zeros(
inputs_ids.size(0),
progress + max_new_token,
inputs_ids.size(2),
dtype=inputs_ids.dtype,
device=inputs_ids.device,
)
inputs_ids_buf.narrow(1, 0, progress).copy_(inputs_ids)
del inputs_ids
inputs_ids = inputs_ids_buf.narrow(1, 0, progress)
pbar: Optional[tqdm] = None
if show_tqdm:
pbar = tqdm(
total=max_new_token,
desc="text" if infer_text else "code",
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}(max) [{elapsed}, {rate_fmt}{postfix}]",
)
past_key_values = None
for i in range(max_new_token):
model_input = self._prepare_generation_inputs(
inputs_ids,
past_key_values,
attention_mask_cache.narrow(1, 0, inputs_ids.shape[1]),
use_cache=not self.is_te_llama,
)
if i > 0:
del emb
inputs_ids_emb = model_input.input_ids.to(self.device_gpt)
if infer_text:
emb: torch.Tensor = self.emb_text(inputs_ids_emb[:, :, 0])
else:
code_emb = [
self.emb_code[i](inputs_ids_emb[:, :, i])
for i in range(self.num_vq)
]
emb = torch.stack(code_emb, 3).sum(3)
del inputs_ids_emb, model_input.input_ids
model_input.inputs_embeds = emb
model_input.to(self.device_gpt, self.gpt.dtype)
outputs: BaseModelOutputWithPast = self.gpt(
attention_mask=model_input.attention_mask,
position_ids=model_input.position_ids,
past_key_values=model_input.past_key_values,
inputs_embeds=model_input.inputs_embeds,
use_cache=model_input.use_cache,
output_attentions=return_attn,
cache_position=model_input.cache_position,
)
del_all(model_input)
attentions.append(outputs.attentions)
hidden_states = outputs.last_hidden_state.to(
self.device, dtype=torch.float
) # 🐻
past_key_values = outputs.past_key_values
del_all(outputs)
if return_hidden:
hiddens.append(hidden_states.narrow(1, -1, 1).squeeze_(1))
with P.cached():
if infer_text:
logits: torch.Tensor = self.head_text(hidden_states)
else:
# logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3)
logits = torch.empty(
hidden_states.size(0),
hidden_states.size(1),
self.num_audio_tokens,
self.num_vq,
dtype=torch.float,
device=self.device,
)
for num_vq_iter in range(self.num_vq):
x: torch.Tensor = self.head_code[num_vq_iter](hidden_states)
logits[..., num_vq_iter] = x
del x
del hidden_states
# logits = logits[:, -1].float()
logits = logits.narrow(1, -1, 1).squeeze_(1).float()
if not infer_text:
# logits = rearrange(logits, "b c n -> (b n) c")
logits = logits.permute(0, 2, 1)
logits = logits.reshape(-1, logits.size(2))
# logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c")
inputs_ids_sliced = inputs_ids.narrow(
1,
start_idx,
inputs_ids.size(1) - start_idx,
).permute(0, 2, 1)
logits_token = inputs_ids_sliced.reshape(
inputs_ids_sliced.size(0) * inputs_ids_sliced.size(1),
-1,
).to(self.device)
del inputs_ids_sliced
else:
logits_token = (
inputs_ids.narrow(
1,
start_idx,
inputs_ids.size(1) - start_idx,
)
.narrow(2, 0, 1)
.to(self.device)
)
logits /= temperature
for logitsProcessors in logits_processors:
logits = logitsProcessors(logits_token, logits)
del logits_token
if i < min_new_token:
logits[:, eos_token] = -torch.inf
scores = F.softmax(logits, dim=-1)
del logits
if manual_seed is None:
idx_next = torch.multinomial(scores, num_samples=1).to(finish.device)
else:
idx_next = torch.multinomial(
scores,
num_samples=1,
generator=self.generator.manual_seed(manual_seed),
).to(finish.device)
del scores
if not infer_text:
# idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq)
idx_next = idx_next.view(-1, self.num_vq)
finish_or = idx_next.eq(eos_token).any(1)
finish.logical_or_(finish_or)
del finish_or
inputs_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1))
else:
finish_or = idx_next.eq(eos_token).any(1)
finish.logical_or_(finish_or)
del finish_or
inputs_ids_buf.narrow(1, progress, 1).copy_(
idx_next.unsqueeze_(-1).expand(-1, -1, self.num_vq),
)
if i == 0 and finish.any():
self.logger.warning(
"unexpected end at index %s",
str([unexpected_idx.item() for unexpected_idx in finish.nonzero()]),
)
if ensure_non_empty and manual_seed is None:
if show_tqdm:
pbar.close()
self.logger.warning("regenerate in order to ensure non-empty")
del_all(attentions)
del_all(hiddens)
del (
start_idx,
end_idx,
finish,
temperature,
attention_mask_cache,
past_key_values,
idx_next,
inputs_ids_buf,
)
new_gen = self.generate(
emb,
inputs_ids,
old_temperature,
eos_token,
attention_mask,
max_new_token,
min_new_token,
logits_processors,
infer_text,
return_attn,
return_hidden,
stream,
show_tqdm,
ensure_non_empty,
stream_batch,
manual_seed,
context,
)
for result in new_gen:
yield result
del inputs_ids
return
del idx_next
progress += 1
inputs_ids = inputs_ids_buf.narrow(1, 0, progress)
not_finished = finish.logical_not().to(end_idx.device)
end_idx.add_(not_finished.int())
stream_iter += not_finished.any().int()
if stream:
if stream_iter > 0 and stream_iter % stream_batch == 0:
self.logger.debug("yield stream result, end: %d", end_idx)
yield self._prepare_generation_outputs(
inputs_ids,
start_idx,
end_idx,
attentions,
hiddens,
infer_text,
)
del not_finished
if finish.all() or context.get():
break
if pbar is not None:
pbar.update(1)
if pbar is not None:
pbar.close()
if not finish.all():
if context.get():
self.logger.warning("generation is interrupted")
else:
self.logger.warning(
f"incomplete result. hit max_new_token: {max_new_token}"
)
del finish, inputs_ids_buf
yield self._prepare_generation_outputs(
inputs_ids,
start_idx,
end_idx,
attentions,
hiddens,
infer_text,
)
|