File size: 13,211 Bytes
c02bdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""Sampling parameters for text generation."""

from enum import IntEnum
from functools import cached_property
from typing import Callable, List, Optional, Union

import torch

_SAMPLING_EPS = 1e-5


class SamplingType(IntEnum):
    GREEDY = 0
    RANDOM = 1
    BEAM = 2


LogitsProcessor = Callable[[List[int], torch.Tensor], torch.Tensor]
"""LogitsProcessor is a function that takes a list of previously generated
tokens and a tensor of the logits for the next token, and returns a modified
tensor of logits to sample from."""


class SamplingParams:
    """Sampling parameters for text generation.

    Overall, we follow the sampling parameters from the OpenAI text completion
    API (https://platform.openai.com/docs/api-reference/completions/create).
    In addition, we support beam search, which is not supported by OpenAI.

    Args:
        n: Number of output sequences to return for the given prompt.
        best_of: Number of output sequences that are generated from the prompt.
            From these `best_of` sequences, the top `n` sequences are returned.
            `best_of` must be greater than or equal to `n`. This is treated as
            the beam width when `use_beam_search` is True. By default, `best_of`
            is set to `n`.
        presence_penalty: Float that penalizes new tokens based on whether they
            appear in the generated text so far. Values > 0 encourage the model
            to use new tokens, while values < 0 encourage the model to repeat
            tokens.
        frequency_penalty: Float that penalizes new tokens based on their
            frequency in the generated text so far. Values > 0 encourage the
            model to use new tokens, while values < 0 encourage the model to
            repeat tokens.
        repetition_penalty: Float that penalizes new tokens based on whether
            they appear in the prompt and the generated text so far. Values > 1
            encourage the model to use new tokens, while values < 1 encourage
            the model to repeat tokens.
        temperature: Float that controls the randomness of the sampling. Lower
            values make the model more deterministic, while higher values make
            the model more random. Zero means greedy sampling.
        top_p: Float that controls the cumulative probability of the top tokens
            to consider. Must be in (0, 1]. Set to 1 to consider all tokens.
        top_k: Integer that controls the number of top tokens to consider. Set
            to -1 to consider all tokens.
        min_p: Float that represents the minimum probability for a token to be
            considered, relative to the probability of the most likely token.
            Must be in [0, 1]. Set to 0 to disable this.
        use_beam_search: Whether to use beam search instead of sampling.
        length_penalty: Float that penalizes sequences based on their length.
            Used in beam search.
        early_stopping: Controls the stopping condition for beam search. It
            accepts the following values: `True`, where the generation stops as
            soon as there are `best_of` complete candidates; `False`, where an
            heuristic is applied and the generation stops when is it very
            unlikely to find better candidates; `"never"`, where the beam search
            procedure only stops when there cannot be better candidates
            (canonical beam search algorithm).
        stop: List of strings that stop the generation when they are generated.
            The returned output will not contain the stop strings.
        stop_token_ids: List of tokens that stop the generation when they are
            generated. The returned output will contain the stop tokens unless
            the stop tokens are special tokens.
        include_stop_str_in_output: Whether to include the stop strings in output
            text. Defaults to False.
        ignore_eos: Whether to ignore the EOS token and continue generating
            tokens after the EOS token is generated.
        max_tokens: Maximum number of tokens to generate per output sequence.
        logprobs: Number of log probabilities to return per output token.
            Note that the implementation follows the OpenAI API: The return
            result includes the log probabilities on the `logprobs` most likely
            tokens, as well the chosen tokens. The API will always return the
            log probability of the sampled token, so there  may be up to
            `logprobs+1` elements in the response.
        prompt_logprobs: Number of log probabilities to return per prompt token.
        skip_special_tokens: Whether to skip special tokens in the output.
        spaces_between_special_tokens: Whether to add spaces between special
            tokens in the output.  Defaults to True.
        logits_processors: List of functions that modify logits based on
            previously generated tokens.
    """

    def __init__(
        self,
        n: int = 1,
        best_of: Optional[int] = None,
        presence_penalty: float = 0.0,
        frequency_penalty: float = 0.0,
        repetition_penalty: float = 1.0,
        temperature: float = 1.0,
        top_p: float = 1.0,
        top_k: int = -1,
        min_p: float = 0.0,
        use_beam_search: bool = False,
        length_penalty: float = 1.0,
        early_stopping: Union[bool, str] = False,
        stop: Optional[Union[str, List[str]]] = None,
        stop_token_ids: Optional[List[int]] = None,
        include_stop_str_in_output: bool = False,
        ignore_eos: bool = False,
        max_tokens: int = 16,
        logprobs: Optional[int] = None,
        prompt_logprobs: Optional[int] = None,
        skip_special_tokens: bool = True,
        spaces_between_special_tokens: bool = True,
        logits_processors: Optional[List[LogitsProcessor]] = (
            [
                lambda logits_token, logits: logits,
            ],
            [
                lambda logits_token, logits: logits,
            ],
        ),
        min_new_token: int = 0,
        max_new_token: int = 8192,
        infer_text: bool = False,
        eos_token: int = 0,
        spk_emb: str = None,
        start_idx: int = 0,
    ) -> None:
        self.n = n
        self.best_of = best_of if best_of is not None else n
        self.presence_penalty = presence_penalty
        self.frequency_penalty = frequency_penalty
        self.repetition_penalty = repetition_penalty
        self.temperature = temperature
        self.top_p = top_p
        self.top_k = top_k
        self.min_p = min_p
        self.use_beam_search = use_beam_search
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.min_new_token = min_new_token
        self.max_new_token = max_new_token
        self.infer_text = infer_text
        self.eos_token = eos_token
        self.spk_emb = spk_emb
        self.start_idx = start_idx
        if stop is None:
            self.stop = []
        elif isinstance(stop, str):
            self.stop = [stop]
        else:
            self.stop = list(stop)
        if stop_token_ids is None:
            self.stop_token_ids = []
        else:
            self.stop_token_ids = list(stop_token_ids)
        self.ignore_eos = ignore_eos
        self.max_tokens = max_tokens
        self.logprobs = logprobs
        self.prompt_logprobs = prompt_logprobs
        self.skip_special_tokens = skip_special_tokens
        self.spaces_between_special_tokens = spaces_between_special_tokens
        self.logits_processors = logits_processors
        self.include_stop_str_in_output = include_stop_str_in_output
        self._verify_args()
        if self.use_beam_search:
            self._verify_beam_search()
        else:
            self._verify_non_beam_search()
            # if self.temperature < _SAMPLING_EPS:
            #     # Zero temperature means greedy sampling.
            #     self.top_p = 1.0
            #     self.top_k = -1
            #     self.min_p = 0.0
            #     self._verify_greedy_sampling()

    def _verify_args(self) -> None:
        if self.n < 1:
            raise ValueError(f"n must be at least 1, got {self.n}.")
        if self.best_of < self.n:
            raise ValueError(
                f"best_of must be greater than or equal to n, "
                f"got n={self.n} and best_of={self.best_of}."
            )
        if not -2.0 <= self.presence_penalty <= 2.0:
            raise ValueError(
                "presence_penalty must be in [-2, 2], got " f"{self.presence_penalty}."
            )
        if not -2.0 <= self.frequency_penalty <= 2.0:
            raise ValueError(
                "frequency_penalty must be in [-2, 2], got "
                f"{self.frequency_penalty}."
            )
        if not 0.0 < self.repetition_penalty <= 2.0:
            raise ValueError(
                "repetition_penalty must be in (0, 2], got "
                f"{self.repetition_penalty}."
            )
        # if self.temperature < 0.0:
        #     raise ValueError(
        #         f"temperature must be non-negative, got {self.temperature}.")
        if not 0.0 < self.top_p <= 1.0:
            raise ValueError(f"top_p must be in (0, 1], got {self.top_p}.")
        if self.top_k < -1 or self.top_k == 0:
            raise ValueError(
                f"top_k must be -1 (disable), or at least 1, " f"got {self.top_k}."
            )
        if not 0.0 <= self.min_p <= 1.0:
            raise ValueError("min_p must be in [0, 1], got " f"{self.min_p}.")
        if self.max_tokens < 1:
            raise ValueError(f"max_tokens must be at least 1, got {self.max_tokens}.")
        if self.logprobs is not None and self.logprobs < 0:
            raise ValueError(f"logprobs must be non-negative, got {self.logprobs}.")
        if self.prompt_logprobs is not None and self.prompt_logprobs < 0:
            raise ValueError(
                f"prompt_logprobs must be non-negative, got " f"{self.prompt_logprobs}."
            )

    def _verify_beam_search(self) -> None:
        if self.best_of == 1:
            raise ValueError(
                "best_of must be greater than 1 when using beam "
                f"search. Got {self.best_of}."
            )
        if self.temperature > _SAMPLING_EPS:
            raise ValueError("temperature must be 0 when using beam search.")
        if self.top_p < 1.0 - _SAMPLING_EPS:
            raise ValueError("top_p must be 1 when using beam search.")
        if self.top_k != -1:
            raise ValueError("top_k must be -1 when using beam search.")
        if self.early_stopping not in [True, False, "never"]:
            raise ValueError(
                f"early_stopping must be True, False, or 'never', "
                f"got {self.early_stopping}."
            )

    def _verify_non_beam_search(self) -> None:
        if self.early_stopping is not False:
            raise ValueError(
                "early_stopping is not effective and must be "
                "False when not using beam search."
            )
        if (
            self.length_penalty < 1.0 - _SAMPLING_EPS
            or self.length_penalty > 1.0 + _SAMPLING_EPS
        ):
            raise ValueError(
                "length_penalty is not effective and must be the "
                "default value of 1.0 when not using beam search."
            )

    def _verify_greedy_sampling(self) -> None:
        if self.best_of > 1:
            raise ValueError(
                "best_of must be 1 when using greedy sampling." f"Got {self.best_of}."
            )

    @cached_property
    def sampling_type(self) -> SamplingType:
        if self.use_beam_search:
            return SamplingType.BEAM
        # if self.temperature < _SAMPLING_EPS:
        #     return SamplingType.GREEDY
        return SamplingType.RANDOM

    def __repr__(self) -> str:
        return (
            f"SamplingParams(n={self.n}, "
            f"best_of={self.best_of}, "
            f"presence_penalty={self.presence_penalty}, "
            f"frequency_penalty={self.frequency_penalty}, "
            f"repetition_penalty={self.repetition_penalty}, "
            f"temperature={self.temperature}, "
            f"top_p={self.top_p}, "
            f"top_k={self.top_k}, "
            f"min_p={self.min_p}, "
            f"use_beam_search={self.use_beam_search}, "
            f"length_penalty={self.length_penalty}, "
            f"early_stopping={self.early_stopping}, "
            f"stop={self.stop}, "
            f"stop_token_ids={self.stop_token_ids}, "
            f"include_stop_str_in_output={self.include_stop_str_in_output}, "
            f"ignore_eos={self.ignore_eos}, "
            f"max_tokens={self.max_tokens}, "
            f"logprobs={self.logprobs}, "
            f"prompt_logprobs={self.prompt_logprobs}, "
            f"skip_special_tokens={self.skip_special_tokens}, "
            "spaces_between_special_tokens="
            f"{self.spaces_between_special_tokens}), "
            f"max_new_token={self.max_new_token}), "
            f"min_new_token={self.min_new_token}), "
            f"infer_text={self.infer_text})"
        )