File size: 15,322 Bytes
c02bdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
"""Sequence and its related classes."""

import copy
import enum
from typing import Dict, List, Optional, Union
import torch
from vllm.block import LogicalTokenBlock
from .sampling_params import SamplingParams

PromptLogprobs = List[Optional[Dict[int, float]]]
SampleLogprobs = List[Dict[int, float]]


class SequenceStatus(enum.Enum):
    """Status of a sequence."""

    WAITING = enum.auto()
    RUNNING = enum.auto()
    SWAPPED = enum.auto()
    FINISHED_STOPPED = enum.auto()
    FINISHED_LENGTH_CAPPED = enum.auto()
    FINISHED_ABORTED = enum.auto()
    FINISHED_IGNORED = enum.auto()

    @staticmethod
    def is_finished(status: "SequenceStatus") -> bool:
        return status in [
            SequenceStatus.FINISHED_STOPPED,
            SequenceStatus.FINISHED_LENGTH_CAPPED,
            SequenceStatus.FINISHED_ABORTED,
            SequenceStatus.FINISHED_IGNORED,
        ]

    @staticmethod
    def get_finished_reason(status: "SequenceStatus") -> Union[str, None]:
        if status == SequenceStatus.FINISHED_STOPPED:
            finish_reason = "stop"
        elif status == SequenceStatus.FINISHED_LENGTH_CAPPED:
            finish_reason = "length"
        elif status == SequenceStatus.FINISHED_ABORTED:
            finish_reason = "abort"
        elif status == SequenceStatus.FINISHED_IGNORED:
            # The ignored sequences are the sequences whose prompt lengths
            # are longer than the model's length cap. Therefore, the stop
            # reason should also be "length" as in OpenAI API.
            finish_reason = "length"
        else:
            finish_reason = None
        return finish_reason


class SequenceData:
    """Data associated with a sequence.


    Args:
        prompt_token_ids: The token IDs of the prompt.

    Attributes:
        prompt_token_ids: The token IDs of the prompt.
        output_token_ids: The token IDs of the output.
        cumulative_logprob: The cumulative log probability of the output.
    """

    def __init__(
        self,
        prompt_token_ids: List[int],
    ) -> None:
        self.prompt_token_ids = prompt_token_ids
        self.output_token_ids: List[int] = []
        self.cumulative_logprob = 0.0
        self.hidden_states: Optional[torch.Tensor] = None
        self.finished = False

    def append_token_id(self, token_id: int, logprob: float) -> None:
        if isinstance(self.cumulative_logprob, float):
            self.cumulative_logprob = [
                0.0,
            ] * len(logprob)
        self.output_token_ids.append(token_id)
        for i in range(len(self.cumulative_logprob)):
            self.cumulative_logprob[i] += logprob[i]

    def append_hidden_states(self, hidden_states: torch.Tensor) -> None:
        if self.hidden_states is None:
            self.hidden_states = hidden_states
        else:
            self.hidden_states = torch.cat([self.hidden_states, hidden_states], dim=0)

    def get_len(self) -> int:
        return len(self.output_token_ids) + len(self.prompt_token_ids)

    def get_prompt_len(self) -> int:
        return len(self.prompt_token_ids)

    def get_output_len(self) -> int:
        return len(self.output_token_ids)

    def get_token_ids(self) -> List[int]:
        return self.prompt_token_ids + self.output_token_ids

    def get_last_token_id(self) -> int:
        if not self.output_token_ids:
            return self.prompt_token_ids[-1]
        return self.output_token_ids[-1]

    def __repr__(self) -> str:
        return (
            f"SequenceData("
            f"prompt_token_ids={self.prompt_token_ids}, "
            f"output_token_ids={self.output_token_ids}, "
            f"cumulative_logprob={self.cumulative_logprob}), "
            f"hidden_states={self.hidden_states.shape if self.hidden_states is not None else None}, "
            f"finished={self.finished})"
        )


class Sequence:
    """Stores the data, status, and block information of a sequence.

    Args:
        seq_id: The ID of the sequence.
        prompt: The prompt of the sequence.
        prompt_token_ids: The token IDs of the prompt.
        block_size: The block size of the sequence. Should be the same as the
            block size used by the block manager and cache engine.
    """

    def __init__(
        self,
        seq_id: int,
        prompt: str,
        prompt_token_ids: List[int],
        block_size: int,
    ) -> None:
        self.seq_id = seq_id
        self.prompt = prompt
        self.block_size = block_size

        self.data = SequenceData(prompt_token_ids)
        self.output_logprobs: SampleLogprobs = []
        self.output_text = ""

        self.logical_token_blocks: List[LogicalTokenBlock] = []
        # Initialize the logical token blocks with the prompt token ids.
        self._append_tokens_to_blocks(prompt_token_ids)
        self.status = SequenceStatus.WAITING

        # Used for incremental detokenization
        self.prefix_offset = 0
        self.read_offset = 0
        # Input + output tokens
        self.tokens: Optional[List[str]] = None

    def _append_logical_block(self) -> None:
        block = LogicalTokenBlock(
            block_number=len(self.logical_token_blocks),
            block_size=self.block_size,
        )
        self.logical_token_blocks.append(block)

    def _append_tokens_to_blocks(self, token_ids: List[int]) -> None:
        cursor = 0
        while cursor < len(token_ids):
            if not self.logical_token_blocks:
                self._append_logical_block()

            last_block = self.logical_token_blocks[-1]
            if last_block.is_full():
                self._append_logical_block()
                last_block = self.logical_token_blocks[-1]

            num_empty_slots = last_block.get_num_empty_slots()
            last_block.append_tokens(token_ids[cursor : cursor + num_empty_slots])
            cursor += num_empty_slots

    def append_token_id(
        self,
        token_id: int,
        logprobs: Dict[int, float],
        hidden_states: Optional[torch.Tensor] = None,
        finished: bool = False,
    ) -> None:
        assert token_id in logprobs
        self._append_tokens_to_blocks([token_id])
        self.output_logprobs.append(logprobs)
        self.data.append_token_id(token_id, logprobs[token_id])
        self.data.append_hidden_states(hidden_states)
        self.data.finished = finished

    def get_len(self) -> int:
        return self.data.get_len()

    def get_prompt_len(self) -> int:
        return self.data.get_prompt_len()

    def get_output_len(self) -> int:
        return self.data.get_output_len()

    def get_token_ids(self) -> List[int]:
        return self.data.get_token_ids()

    def get_last_token_id(self) -> int:
        return self.data.get_last_token_id()

    def get_output_token_ids(self) -> List[int]:
        return self.data.output_token_ids

    def get_cumulative_logprob(self) -> float:
        return self.data.cumulative_logprob

    def get_beam_search_score(
        self,
        length_penalty: float = 0.0,
        seq_len: Optional[int] = None,
        eos_token_id: Optional[int] = None,
    ) -> float:
        """Calculate the beam search score with length penalty.

        Adapted from

        https://github.com/huggingface/transformers/blob/ccb92be23def445f2afdea94c31286f84b89eb5b/src/transformers/generation/beam_search.py#L938
        """
        if seq_len is None:
            seq_len = self.get_len()
            # NOTE: HF implementation does not count the EOS token
            # towards the length, we align with that here for testing.
            if eos_token_id is not None and self.get_last_token_id() == eos_token_id:
                seq_len -= 1
        return self.get_cumulative_logprob() / (seq_len**length_penalty)

    def is_finished(self) -> bool:
        return SequenceStatus.is_finished(self.status)

    def fork(self, new_seq_id: int) -> "Sequence":
        new_seq = copy.deepcopy(self)
        new_seq.seq_id = new_seq_id
        return new_seq

    def __repr__(self) -> str:
        return (
            f"Sequence(seq_id={self.seq_id}, "
            f"status={self.status.name}, "
            f"num_blocks={len(self.logical_token_blocks)})"
        )


class SequenceGroup:
    """A group of sequences that are generated from the same prompt.

    Args:
        request_id: The ID of the request.
        seqs: The list of sequences.
        sampling_params: The sampling parameters used to generate the outputs.
        arrival_time: The arrival time of the request.
    """

    def __init__(
        self,
        request_id: str,
        seqs: List[Sequence],
        sampling_params: SamplingParams,
        arrival_time: float,
    ) -> None:
        self.request_id = request_id
        self.seqs_dict = {seq.seq_id: seq for seq in seqs}
        self.sampling_params = sampling_params
        self.arrival_time = arrival_time
        self.prompt_logprobs: Optional[PromptLogprobs] = None

    @property
    def prompt(self) -> str:
        # All sequences in the group should have the same prompt.
        # We use the prompt of an arbitrary sequence.
        return next(iter(self.seqs_dict.values())).prompt

    @property
    def prompt_token_ids(self) -> List[int]:
        # All sequences in the group should have the same prompt.
        # We use the prompt of an arbitrary sequence.
        return next(iter(self.seqs_dict.values())).data.prompt_token_ids

    def get_max_num_running_seqs(self) -> int:
        """The maximum number of sequences running in parallel in the remaining
        lifetime of the request."""
        if self.sampling_params.use_beam_search:
            # For beam search, maximally there will always be `best_of` beam
            # candidates running in the future.
            return self.sampling_params.best_of
        else:
            if self.sampling_params.best_of > self.num_seqs():
                # At prompt stage, the sequence group is not yet filled up
                # and only have one sequence running. However, in the
                # generation stage, we will have `best_of` sequences running.
                return self.sampling_params.best_of
            # At sampling stages, return the number of actual sequences
            # that are not finished yet.
            return self.num_unfinished_seqs()

    def get_seqs(
        self,
        status: Optional[SequenceStatus] = None,
    ) -> List[Sequence]:
        if status is None:
            return list(self.seqs_dict.values())
        else:
            return [seq for seq in self.seqs_dict.values() if seq.status == status]

    def get_unfinished_seqs(self) -> List[Sequence]:
        return [seq for seq in self.seqs_dict.values() if not seq.is_finished()]

    def get_finished_seqs(self) -> List[Sequence]:
        return [seq for seq in self.seqs_dict.values() if seq.is_finished()]

    def num_seqs(self, status: Optional[SequenceStatus] = None) -> int:
        return len(self.get_seqs(status))

    def num_unfinished_seqs(self) -> int:
        return len(self.get_unfinished_seqs())

    def num_finished_seqs(self) -> int:
        return len(self.get_finished_seqs())

    def find(self, seq_id: int) -> Sequence:
        if seq_id not in self.seqs_dict:
            raise ValueError(f"Sequence {seq_id} not found.")
        return self.seqs_dict[seq_id]

    def add(self, seq: Sequence) -> None:
        if seq.seq_id in self.seqs_dict:
            raise ValueError(f"Sequence {seq.seq_id} already exists.")
        self.seqs_dict[seq.seq_id] = seq

    def remove(self, seq_id: int) -> None:
        if seq_id not in self.seqs_dict:
            raise ValueError(f"Sequence {seq_id} not found.")
        del self.seqs_dict[seq_id]

    def is_finished(self) -> bool:
        return all(seq.is_finished() for seq in self.get_seqs())

    def __repr__(self) -> str:
        return (
            f"SequenceGroup(request_id={self.request_id}, "
            f"sampling_params={self.sampling_params}, "
            f"num_seqs={len(self.seqs_dict)})"
        )


class SequenceGroupMetadata:
    """Metadata for a sequence group. Used to create `InputMetadata`.


    Args:
        request_id: The ID of the request.
        is_prompt: Whether the request is at prompt stage.
        seq_data: The sequence data. (Seq id -> sequence data)
        sampling_params: The sampling parameters used to generate the outputs.
        block_tables: The block tables. (Seq id -> list of physical block
            numbers)
    """

    def __init__(
        self,
        request_id: str,
        is_prompt: bool,
        seq_data: Dict[int, SequenceData],
        sampling_params: SamplingParams,
        block_tables: Dict[int, List[int]],
    ) -> None:
        self.request_id = request_id
        self.is_prompt = is_prompt
        self.seq_data = seq_data
        self.sampling_params = sampling_params
        self.block_tables = block_tables


class SequenceOutput:
    """The model output associated with a sequence.

    Args:
        parent_seq_id: The ID of the parent sequence (for forking in beam
            search).
        output_token: The output token ID.
        logprobs: The logprobs of the output token.
            (Token id -> logP(x_i+1 | x_0, ..., x_i))
    """

    def __init__(
        self,
        parent_seq_id: int,
        output_token: int,
        logprobs: Dict[int, float],
        hidden_states: Optional[torch.Tensor] = None,
        finished: bool = False,
    ) -> None:
        self.parent_seq_id = parent_seq_id
        self.output_token = output_token
        self.logprobs = logprobs
        self.finished = finished
        self.hidden_states = hidden_states

    def __repr__(self) -> str:
        return (
            f"SequenceOutput(parent_seq_id={self.parent_seq_id}, "
            f"output_token={self.output_token}, "
            f"logprobs={self.logprobs}),"
            f"finished={self.finished}),"
            f"hidden_states={self.hidden_states.shape if self.hidden_states is not None else None}"
        )

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, SequenceOutput):
            raise NotImplementedError()
        return (
            self.parent_seq_id == other.parent_seq_id
            and self.output_token == other.output_token
            and self.logprobs == other.logprobs
        )


class SequenceGroupOutput:
    """The model output associated with a sequence group."""

    def __init__(
        self,
        samples: List[SequenceOutput],
        prompt_logprobs: Optional[PromptLogprobs],
    ) -> None:
        self.samples = samples
        self.prompt_logprobs = prompt_logprobs

    def __repr__(self) -> str:
        return (
            f"SequenceGroupOutput(samples={self.samples}, "
            f"prompt_logprobs={self.prompt_logprobs})"
        )

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, SequenceGroupOutput):
            raise NotImplementedError()
        return (
            self.samples == other.samples
            and self.prompt_logprobs == other.prompt_logprobs
        )


# For each sequence group, we generate a list of SequenceOutput object,
# each of which contains one possible candidate for the next token.
SamplerOutput = List[SequenceGroupOutput]