File size: 15,322 Bytes
c02bdcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
"""Sequence and its related classes."""
import copy
import enum
from typing import Dict, List, Optional, Union
import torch
from vllm.block import LogicalTokenBlock
from .sampling_params import SamplingParams
PromptLogprobs = List[Optional[Dict[int, float]]]
SampleLogprobs = List[Dict[int, float]]
class SequenceStatus(enum.Enum):
"""Status of a sequence."""
WAITING = enum.auto()
RUNNING = enum.auto()
SWAPPED = enum.auto()
FINISHED_STOPPED = enum.auto()
FINISHED_LENGTH_CAPPED = enum.auto()
FINISHED_ABORTED = enum.auto()
FINISHED_IGNORED = enum.auto()
@staticmethod
def is_finished(status: "SequenceStatus") -> bool:
return status in [
SequenceStatus.FINISHED_STOPPED,
SequenceStatus.FINISHED_LENGTH_CAPPED,
SequenceStatus.FINISHED_ABORTED,
SequenceStatus.FINISHED_IGNORED,
]
@staticmethod
def get_finished_reason(status: "SequenceStatus") -> Union[str, None]:
if status == SequenceStatus.FINISHED_STOPPED:
finish_reason = "stop"
elif status == SequenceStatus.FINISHED_LENGTH_CAPPED:
finish_reason = "length"
elif status == SequenceStatus.FINISHED_ABORTED:
finish_reason = "abort"
elif status == SequenceStatus.FINISHED_IGNORED:
# The ignored sequences are the sequences whose prompt lengths
# are longer than the model's length cap. Therefore, the stop
# reason should also be "length" as in OpenAI API.
finish_reason = "length"
else:
finish_reason = None
return finish_reason
class SequenceData:
"""Data associated with a sequence.
Args:
prompt_token_ids: The token IDs of the prompt.
Attributes:
prompt_token_ids: The token IDs of the prompt.
output_token_ids: The token IDs of the output.
cumulative_logprob: The cumulative log probability of the output.
"""
def __init__(
self,
prompt_token_ids: List[int],
) -> None:
self.prompt_token_ids = prompt_token_ids
self.output_token_ids: List[int] = []
self.cumulative_logprob = 0.0
self.hidden_states: Optional[torch.Tensor] = None
self.finished = False
def append_token_id(self, token_id: int, logprob: float) -> None:
if isinstance(self.cumulative_logprob, float):
self.cumulative_logprob = [
0.0,
] * len(logprob)
self.output_token_ids.append(token_id)
for i in range(len(self.cumulative_logprob)):
self.cumulative_logprob[i] += logprob[i]
def append_hidden_states(self, hidden_states: torch.Tensor) -> None:
if self.hidden_states is None:
self.hidden_states = hidden_states
else:
self.hidden_states = torch.cat([self.hidden_states, hidden_states], dim=0)
def get_len(self) -> int:
return len(self.output_token_ids) + len(self.prompt_token_ids)
def get_prompt_len(self) -> int:
return len(self.prompt_token_ids)
def get_output_len(self) -> int:
return len(self.output_token_ids)
def get_token_ids(self) -> List[int]:
return self.prompt_token_ids + self.output_token_ids
def get_last_token_id(self) -> int:
if not self.output_token_ids:
return self.prompt_token_ids[-1]
return self.output_token_ids[-1]
def __repr__(self) -> str:
return (
f"SequenceData("
f"prompt_token_ids={self.prompt_token_ids}, "
f"output_token_ids={self.output_token_ids}, "
f"cumulative_logprob={self.cumulative_logprob}), "
f"hidden_states={self.hidden_states.shape if self.hidden_states is not None else None}, "
f"finished={self.finished})"
)
class Sequence:
"""Stores the data, status, and block information of a sequence.
Args:
seq_id: The ID of the sequence.
prompt: The prompt of the sequence.
prompt_token_ids: The token IDs of the prompt.
block_size: The block size of the sequence. Should be the same as the
block size used by the block manager and cache engine.
"""
def __init__(
self,
seq_id: int,
prompt: str,
prompt_token_ids: List[int],
block_size: int,
) -> None:
self.seq_id = seq_id
self.prompt = prompt
self.block_size = block_size
self.data = SequenceData(prompt_token_ids)
self.output_logprobs: SampleLogprobs = []
self.output_text = ""
self.logical_token_blocks: List[LogicalTokenBlock] = []
# Initialize the logical token blocks with the prompt token ids.
self._append_tokens_to_blocks(prompt_token_ids)
self.status = SequenceStatus.WAITING
# Used for incremental detokenization
self.prefix_offset = 0
self.read_offset = 0
# Input + output tokens
self.tokens: Optional[List[str]] = None
def _append_logical_block(self) -> None:
block = LogicalTokenBlock(
block_number=len(self.logical_token_blocks),
block_size=self.block_size,
)
self.logical_token_blocks.append(block)
def _append_tokens_to_blocks(self, token_ids: List[int]) -> None:
cursor = 0
while cursor < len(token_ids):
if not self.logical_token_blocks:
self._append_logical_block()
last_block = self.logical_token_blocks[-1]
if last_block.is_full():
self._append_logical_block()
last_block = self.logical_token_blocks[-1]
num_empty_slots = last_block.get_num_empty_slots()
last_block.append_tokens(token_ids[cursor : cursor + num_empty_slots])
cursor += num_empty_slots
def append_token_id(
self,
token_id: int,
logprobs: Dict[int, float],
hidden_states: Optional[torch.Tensor] = None,
finished: bool = False,
) -> None:
assert token_id in logprobs
self._append_tokens_to_blocks([token_id])
self.output_logprobs.append(logprobs)
self.data.append_token_id(token_id, logprobs[token_id])
self.data.append_hidden_states(hidden_states)
self.data.finished = finished
def get_len(self) -> int:
return self.data.get_len()
def get_prompt_len(self) -> int:
return self.data.get_prompt_len()
def get_output_len(self) -> int:
return self.data.get_output_len()
def get_token_ids(self) -> List[int]:
return self.data.get_token_ids()
def get_last_token_id(self) -> int:
return self.data.get_last_token_id()
def get_output_token_ids(self) -> List[int]:
return self.data.output_token_ids
def get_cumulative_logprob(self) -> float:
return self.data.cumulative_logprob
def get_beam_search_score(
self,
length_penalty: float = 0.0,
seq_len: Optional[int] = None,
eos_token_id: Optional[int] = None,
) -> float:
"""Calculate the beam search score with length penalty.
Adapted from
https://github.com/huggingface/transformers/blob/ccb92be23def445f2afdea94c31286f84b89eb5b/src/transformers/generation/beam_search.py#L938
"""
if seq_len is None:
seq_len = self.get_len()
# NOTE: HF implementation does not count the EOS token
# towards the length, we align with that here for testing.
if eos_token_id is not None and self.get_last_token_id() == eos_token_id:
seq_len -= 1
return self.get_cumulative_logprob() / (seq_len**length_penalty)
def is_finished(self) -> bool:
return SequenceStatus.is_finished(self.status)
def fork(self, new_seq_id: int) -> "Sequence":
new_seq = copy.deepcopy(self)
new_seq.seq_id = new_seq_id
return new_seq
def __repr__(self) -> str:
return (
f"Sequence(seq_id={self.seq_id}, "
f"status={self.status.name}, "
f"num_blocks={len(self.logical_token_blocks)})"
)
class SequenceGroup:
"""A group of sequences that are generated from the same prompt.
Args:
request_id: The ID of the request.
seqs: The list of sequences.
sampling_params: The sampling parameters used to generate the outputs.
arrival_time: The arrival time of the request.
"""
def __init__(
self,
request_id: str,
seqs: List[Sequence],
sampling_params: SamplingParams,
arrival_time: float,
) -> None:
self.request_id = request_id
self.seqs_dict = {seq.seq_id: seq for seq in seqs}
self.sampling_params = sampling_params
self.arrival_time = arrival_time
self.prompt_logprobs: Optional[PromptLogprobs] = None
@property
def prompt(self) -> str:
# All sequences in the group should have the same prompt.
# We use the prompt of an arbitrary sequence.
return next(iter(self.seqs_dict.values())).prompt
@property
def prompt_token_ids(self) -> List[int]:
# All sequences in the group should have the same prompt.
# We use the prompt of an arbitrary sequence.
return next(iter(self.seqs_dict.values())).data.prompt_token_ids
def get_max_num_running_seqs(self) -> int:
"""The maximum number of sequences running in parallel in the remaining
lifetime of the request."""
if self.sampling_params.use_beam_search:
# For beam search, maximally there will always be `best_of` beam
# candidates running in the future.
return self.sampling_params.best_of
else:
if self.sampling_params.best_of > self.num_seqs():
# At prompt stage, the sequence group is not yet filled up
# and only have one sequence running. However, in the
# generation stage, we will have `best_of` sequences running.
return self.sampling_params.best_of
# At sampling stages, return the number of actual sequences
# that are not finished yet.
return self.num_unfinished_seqs()
def get_seqs(
self,
status: Optional[SequenceStatus] = None,
) -> List[Sequence]:
if status is None:
return list(self.seqs_dict.values())
else:
return [seq for seq in self.seqs_dict.values() if seq.status == status]
def get_unfinished_seqs(self) -> List[Sequence]:
return [seq for seq in self.seqs_dict.values() if not seq.is_finished()]
def get_finished_seqs(self) -> List[Sequence]:
return [seq for seq in self.seqs_dict.values() if seq.is_finished()]
def num_seqs(self, status: Optional[SequenceStatus] = None) -> int:
return len(self.get_seqs(status))
def num_unfinished_seqs(self) -> int:
return len(self.get_unfinished_seqs())
def num_finished_seqs(self) -> int:
return len(self.get_finished_seqs())
def find(self, seq_id: int) -> Sequence:
if seq_id not in self.seqs_dict:
raise ValueError(f"Sequence {seq_id} not found.")
return self.seqs_dict[seq_id]
def add(self, seq: Sequence) -> None:
if seq.seq_id in self.seqs_dict:
raise ValueError(f"Sequence {seq.seq_id} already exists.")
self.seqs_dict[seq.seq_id] = seq
def remove(self, seq_id: int) -> None:
if seq_id not in self.seqs_dict:
raise ValueError(f"Sequence {seq_id} not found.")
del self.seqs_dict[seq_id]
def is_finished(self) -> bool:
return all(seq.is_finished() for seq in self.get_seqs())
def __repr__(self) -> str:
return (
f"SequenceGroup(request_id={self.request_id}, "
f"sampling_params={self.sampling_params}, "
f"num_seqs={len(self.seqs_dict)})"
)
class SequenceGroupMetadata:
"""Metadata for a sequence group. Used to create `InputMetadata`.
Args:
request_id: The ID of the request.
is_prompt: Whether the request is at prompt stage.
seq_data: The sequence data. (Seq id -> sequence data)
sampling_params: The sampling parameters used to generate the outputs.
block_tables: The block tables. (Seq id -> list of physical block
numbers)
"""
def __init__(
self,
request_id: str,
is_prompt: bool,
seq_data: Dict[int, SequenceData],
sampling_params: SamplingParams,
block_tables: Dict[int, List[int]],
) -> None:
self.request_id = request_id
self.is_prompt = is_prompt
self.seq_data = seq_data
self.sampling_params = sampling_params
self.block_tables = block_tables
class SequenceOutput:
"""The model output associated with a sequence.
Args:
parent_seq_id: The ID of the parent sequence (for forking in beam
search).
output_token: The output token ID.
logprobs: The logprobs of the output token.
(Token id -> logP(x_i+1 | x_0, ..., x_i))
"""
def __init__(
self,
parent_seq_id: int,
output_token: int,
logprobs: Dict[int, float],
hidden_states: Optional[torch.Tensor] = None,
finished: bool = False,
) -> None:
self.parent_seq_id = parent_seq_id
self.output_token = output_token
self.logprobs = logprobs
self.finished = finished
self.hidden_states = hidden_states
def __repr__(self) -> str:
return (
f"SequenceOutput(parent_seq_id={self.parent_seq_id}, "
f"output_token={self.output_token}, "
f"logprobs={self.logprobs}),"
f"finished={self.finished}),"
f"hidden_states={self.hidden_states.shape if self.hidden_states is not None else None}"
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, SequenceOutput):
raise NotImplementedError()
return (
self.parent_seq_id == other.parent_seq_id
and self.output_token == other.output_token
and self.logprobs == other.logprobs
)
class SequenceGroupOutput:
"""The model output associated with a sequence group."""
def __init__(
self,
samples: List[SequenceOutput],
prompt_logprobs: Optional[PromptLogprobs],
) -> None:
self.samples = samples
self.prompt_logprobs = prompt_logprobs
def __repr__(self) -> str:
return (
f"SequenceGroupOutput(samples={self.samples}, "
f"prompt_logprobs={self.prompt_logprobs})"
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, SequenceGroupOutput):
raise NotImplementedError()
return (
self.samples == other.samples
and self.prompt_logprobs == other.prompt_logprobs
)
# For each sequence group, we generate a list of SequenceOutput object,
# each of which contains one possible candidate for the next token.
SamplerOutput = List[SequenceGroupOutput]
|