|
import math |
|
from typing import List, Optional, Literal, Union |
|
|
|
import numpy as np |
|
import pybase16384 as b14 |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from vector_quantize_pytorch import GroupedResidualFSQ |
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
intermediate_dim: int, |
|
kernel: int, |
|
dilation: int, |
|
layer_scale_init_value: float = 1e-6, |
|
): |
|
|
|
super().__init__() |
|
self.dwconv = nn.Conv1d( |
|
dim, |
|
dim, |
|
kernel_size=kernel, |
|
padding=dilation * (kernel // 2), |
|
dilation=dilation, |
|
groups=dim, |
|
) |
|
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear( |
|
dim, intermediate_dim |
|
) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(intermediate_dim, dim) |
|
self.gamma = ( |
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) |
|
if layer_scale_init_value > 0 |
|
else None |
|
) |
|
|
|
def forward(self, x: torch.Tensor, cond=None) -> torch.Tensor: |
|
residual = x |
|
|
|
y = self.dwconv(x) |
|
y.transpose_(1, 2) |
|
x = self.norm(y) |
|
del y |
|
y = self.pwconv1(x) |
|
del x |
|
x = self.act(y) |
|
del y |
|
y = self.pwconv2(x) |
|
del x |
|
if self.gamma is not None: |
|
y *= self.gamma |
|
y.transpose_(1, 2) |
|
|
|
x = y + residual |
|
del y |
|
|
|
return x |
|
|
|
|
|
class GFSQ(nn.Module): |
|
|
|
def __init__( |
|
self, dim: int, levels: List[int], G: int, R: int, eps=1e-5, transpose=True |
|
): |
|
super(GFSQ, self).__init__() |
|
self.quantizer = GroupedResidualFSQ( |
|
dim=dim, |
|
levels=list(levels), |
|
num_quantizers=R, |
|
groups=G, |
|
) |
|
self.n_ind = math.prod(levels) |
|
self.eps = eps |
|
self.transpose = transpose |
|
self.G = G |
|
self.R = R |
|
|
|
def _embed(self, x: torch.Tensor): |
|
if self.transpose: |
|
x = x.transpose(1, 2) |
|
""" |
|
x = rearrange( |
|
x, "b t (g r) -> g b t r", g = self.G, r = self.R, |
|
) |
|
""" |
|
x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3) |
|
feat = self.quantizer.get_output_from_indices(x) |
|
return feat.transpose_(1, 2) if self.transpose else feat |
|
|
|
def __call__(self, x: torch.Tensor) -> torch.Tensor: |
|
return super().__call__(x) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.transpose: |
|
x.transpose_(1, 2) |
|
|
|
_, ind = self.quantizer(x) |
|
""" |
|
ind = rearrange( |
|
ind, "g b t r ->b t (g r)", |
|
) |
|
""" |
|
ind = ind.permute(1, 2, 0, 3).contiguous() |
|
ind = ind.view(ind.size(0), ind.size(1), -1) |
|
""" |
|
embed_onehot_tmp = F.one_hot(ind.long(), self.n_ind) |
|
embed_onehot = embed_onehot_tmp.to(x.dtype) |
|
del embed_onehot_tmp |
|
e_mean = torch.mean(embed_onehot, dim=[0, 1]) |
|
# e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1) |
|
torch.div(e_mean, (e_mean.sum(dim=1) + self.eps).unsqueeze(1), out=e_mean) |
|
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1)) |
|
|
|
return |
|
torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device), |
|
feat.transpose_(1, 2) if self.transpose else feat, |
|
perplexity, |
|
""" |
|
return ind.transpose_(1, 2) if self.transpose else ind |
|
|
|
|
|
class DVAEDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
idim: int, |
|
odim: int, |
|
n_layer=12, |
|
bn_dim=64, |
|
hidden=256, |
|
kernel=7, |
|
dilation=2, |
|
up=False, |
|
): |
|
super().__init__() |
|
self.up = up |
|
self.conv_in = nn.Sequential( |
|
nn.Conv1d(idim, bn_dim, 3, 1, 1), |
|
nn.GELU(), |
|
nn.Conv1d(bn_dim, hidden, 3, 1, 1), |
|
) |
|
self.decoder_block = nn.ModuleList( |
|
[ |
|
ConvNeXtBlock( |
|
hidden, |
|
hidden * 4, |
|
kernel, |
|
dilation, |
|
) |
|
for _ in range(n_layer) |
|
] |
|
) |
|
self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False) |
|
|
|
def forward(self, x: torch.Tensor, conditioning=None) -> torch.Tensor: |
|
|
|
y = self.conv_in(x) |
|
del x |
|
for f in self.decoder_block: |
|
y = f(y, conditioning) |
|
|
|
x = self.conv_out(y) |
|
del y |
|
return x |
|
|
|
|
|
class MelSpectrogramFeatures(torch.nn.Module): |
|
def __init__( |
|
self, |
|
sample_rate=24000, |
|
n_fft=1024, |
|
hop_length=256, |
|
n_mels=100, |
|
padding: Literal["center", "same"] = "center", |
|
device: torch.device = torch.device("cpu"), |
|
): |
|
super().__init__() |
|
self.device = device |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.mel_spec = torchaudio.transforms.MelSpectrogram( |
|
sample_rate=sample_rate, |
|
n_fft=n_fft, |
|
hop_length=hop_length, |
|
n_mels=n_mels, |
|
center=padding == "center", |
|
power=1, |
|
) |
|
|
|
def __call__(self, audio: torch.Tensor) -> torch.Tensor: |
|
return super().__call__(audio) |
|
|
|
def forward(self, audio: torch.Tensor) -> torch.Tensor: |
|
audio = audio.to(self.device) |
|
mel: torch.Tensor = self.mel_spec(audio) |
|
features = torch.log(torch.clip(mel, min=1e-5)) |
|
return features |
|
|
|
|
|
class DVAE(nn.Module): |
|
def __init__( |
|
self, |
|
decoder_config: dict, |
|
encoder_config: Optional[dict] = None, |
|
vq_config: Optional[dict] = None, |
|
dim=512, |
|
coef: Optional[str] = None, |
|
device: torch.device = torch.device("cpu"), |
|
): |
|
super().__init__() |
|
if coef is None: |
|
coef = torch.rand(100) |
|
else: |
|
coef = torch.from_numpy( |
|
np.frombuffer(b14.decode_from_string(coef), dtype=np.float32).copy() |
|
) |
|
self.register_buffer("coef", coef.unsqueeze(0).unsqueeze_(2)) |
|
|
|
if encoder_config is not None: |
|
self.downsample_conv = nn.Sequential( |
|
nn.Conv1d(100, dim, 3, 1, 1), |
|
nn.GELU(), |
|
nn.Conv1d(dim, dim, 4, 2, 1), |
|
nn.GELU(), |
|
) |
|
self.preprocessor_mel = MelSpectrogramFeatures(device=device) |
|
self.encoder: Optional[DVAEDecoder] = DVAEDecoder(**encoder_config) |
|
|
|
self.decoder = DVAEDecoder(**decoder_config) |
|
self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False) |
|
if vq_config is not None: |
|
self.vq_layer = GFSQ(**vq_config) |
|
else: |
|
self.vq_layer = None |
|
|
|
def __repr__(self) -> str: |
|
return b14.encode_to_string( |
|
self.coef.cpu().numpy().astype(np.float32).tobytes() |
|
) |
|
|
|
def __call__( |
|
self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode" |
|
) -> torch.Tensor: |
|
return super().__call__(inp, mode) |
|
|
|
@torch.inference_mode() |
|
def forward( |
|
self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode" |
|
) -> torch.Tensor: |
|
if mode == "encode" and hasattr(self, "encoder") and self.vq_layer is not None: |
|
mel = self.preprocessor_mel(inp) |
|
x: torch.Tensor = self.downsample_conv( |
|
torch.div(mel, self.coef.view(100, 1).expand(mel.shape), out=mel), |
|
).unsqueeze_(0) |
|
del mel |
|
x = self.encoder(x) |
|
ind = self.vq_layer(x) |
|
del x |
|
return ind |
|
|
|
if self.vq_layer is not None: |
|
vq_feats = self.vq_layer._embed(inp) |
|
else: |
|
vq_feats = inp |
|
|
|
vq_feats = ( |
|
vq_feats.view( |
|
(vq_feats.size(0), 2, vq_feats.size(1) // 2, vq_feats.size(2)), |
|
) |
|
.permute(0, 2, 3, 1) |
|
.flatten(2) |
|
) |
|
|
|
dec_out = self.out_conv( |
|
self.decoder( |
|
x=vq_feats, |
|
), |
|
) |
|
|
|
del vq_feats |
|
|
|
return torch.mul(dec_out, self.coef, out=dec_out) |
|
|
|
@torch.inference_mode() |
|
def sample_audio(self, wav: Union[np.ndarray, torch.Tensor]) -> torch.Tensor: |
|
if isinstance(wav, np.ndarray): |
|
wav = torch.from_numpy(wav) |
|
return self(wav, "encode").squeeze_(0) |
|
|