ChatTTS2 / tools /llm /llm.py
zhengr's picture
init
c02bdcd
raw
history blame
3.44 kB
from openai import OpenAI
prompt_dict = {
"kimi": [
{
"role": "system",
"content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。",
},
{
"role": "user",
"content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。",
},
{
"role": "assistant",
"content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。",
},
],
"deepseek": [
{"role": "system", "content": "You are a helpful assistant"},
{
"role": "user",
"content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。",
},
{
"role": "assistant",
"content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。",
},
],
"deepseek_TN": [
{"role": "system", "content": "You are a helpful assistant"},
{
"role": "user",
"content": "你好,现在我们在处理TTS的文本输入,下面将会给你输入一段文本,请你将其中的阿拉伯数字等等转为文字表达,并且输出的文本里仅包含逗号和句号这两个标点符号",
},
{
"role": "assistant",
"content": "好的,我现在对TTS的文本输入进行处理。这一般叫做text normalization。下面请输入",
},
{"role": "user", "content": "We paid $123 for this desk."},
{
"role": "assistant",
"content": "We paid one hundred and twenty three dollars for this desk.",
},
{"role": "user", "content": "详询请拨打010-724654"},
{"role": "assistant", "content": "详询请拨打零幺零,七二四六五四"},
{"role": "user", "content": "罗森宣布将于7月24日退市,在华门店超6000家!"},
{
"role": "assistant",
"content": "罗森宣布将于七月二十四日退市,在华门店超过六千家。",
},
],
}
class ChatOpenAI:
def __init__(self, api_key, base_url, model):
self.client = OpenAI(
api_key=api_key,
base_url=base_url,
)
self.model = model
def call(self, user_question, temperature=0.3, prompt_version="kimi", **kwargs):
completion = self.client.chat.completions.create(
model=self.model,
messages=prompt_dict[prompt_version]
+ [
{"role": "user", "content": user_question},
],
temperature=temperature,
**kwargs
)
return completion.choices[0].message.content