ChatTTS2 / ChatTTS /model /velocity /block_manager.py
zhengr's picture
init
c02bdcd
"""A block manager that manages token blocks."""
import enum
from typing import Dict, List, Optional, Set, Tuple
from vllm.block import PhysicalTokenBlock
from .sequence import Sequence, SequenceGroup, SequenceStatus
from vllm.utils import Device
# Mapping: logical block number -> physical block.
BlockTable = List[PhysicalTokenBlock]
class BlockAllocator:
"""Manages free physical token blocks for a device.
The allocator maintains a list of free blocks and allocates a block when
requested. When a block is freed, its reference count is decremented. If
the reference count becomes zero, the block is added back to the free list.
"""
def __init__(
self,
device: Device,
block_size: int,
num_blocks: int,
) -> None:
self.device = device
self.block_size = block_size
self.num_blocks = num_blocks
# Initialize the free blocks.
self.free_blocks: BlockTable = []
for i in range(num_blocks):
block = PhysicalTokenBlock(
device=device, block_number=i, block_size=block_size
)
self.free_blocks.append(block)
def allocate(self) -> PhysicalTokenBlock:
if not self.free_blocks:
raise ValueError("Out of memory! No free blocks are available.")
block = self.free_blocks.pop()
block.ref_count = 1
return block
def free(self, block: PhysicalTokenBlock) -> None:
if block.ref_count == 0:
raise ValueError(f"Double free! {block} is already freed.")
block.ref_count -= 1
if block.ref_count == 0:
self.free_blocks.append(block)
def get_num_free_blocks(self) -> int:
return len(self.free_blocks)
class AllocStatus(enum.Enum):
"""Result for BlockSpaceManager.can_allocate
1. Ok: seq_group can be allocated now.
2. Later: seq_group cannot be allocated.
The capacity of allocator is larger than seq_group required.
3. Never: seq_group can never be allocated.
The seq_group is too large to allocated in GPU.
"""
OK = enum.auto()
LATER = enum.auto()
NEVER = enum.auto()
class BlockSpaceManager:
"""Manages the mapping between logical and physical token blocks."""
def __init__(
self,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
watermark: float = 0.01,
sliding_window: Optional[int] = None,
) -> None:
self.block_size = block_size
self.num_total_gpu_blocks = num_gpu_blocks
self.num_total_cpu_blocks = num_cpu_blocks
self.block_sliding_window = None
if sliding_window is not None:
assert sliding_window % block_size == 0, (sliding_window, block_size)
self.block_sliding_window = sliding_window // block_size
self.watermark = watermark
assert watermark >= 0.0
self.watermark_blocks = int(watermark * num_gpu_blocks)
self.gpu_allocator = BlockAllocator(Device.GPU, block_size, num_gpu_blocks)
self.cpu_allocator = BlockAllocator(Device.CPU, block_size, num_cpu_blocks)
# Mapping: seq_id -> BlockTable.
self.block_tables: Dict[int, BlockTable] = {}
def can_allocate(self, seq_group: SequenceGroup) -> AllocStatus:
# FIXME(woosuk): Here we assume that all sequences in the group share
# the same prompt. This may not be true for preempted sequences.
seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]
num_required_blocks = len(seq.logical_token_blocks)
if self.block_sliding_window is not None:
num_required_blocks = min(num_required_blocks, self.block_sliding_window)
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
# Use watermark to avoid frequent cache eviction.
if self.num_total_gpu_blocks - num_required_blocks < self.watermark_blocks:
return AllocStatus.NEVER
if num_free_gpu_blocks - num_required_blocks >= self.watermark_blocks:
return AllocStatus.OK
else:
return AllocStatus.LATER
def allocate(self, seq_group: SequenceGroup) -> None:
# NOTE: Here we assume that all sequences in the group have the same
# prompt.
seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]
# Allocate new physical token blocks that will store the prompt tokens.
block_table: BlockTable = []
for logical_idx in range(len(seq.logical_token_blocks)):
if (
self.block_sliding_window is not None
and logical_idx >= self.block_sliding_window
):
block = block_table[logical_idx % self.block_sliding_window]
else:
block = self.gpu_allocator.allocate()
# Set the reference counts of the token blocks.
block.ref_count = seq_group.num_seqs()
block_table.append(block)
# Assign the block table for each sequence.
for seq in seq_group.get_seqs(status=SequenceStatus.WAITING):
self.block_tables[seq.seq_id] = block_table.copy()
def can_append_slot(self, seq_group: SequenceGroup) -> bool:
# Simple heuristic: If there is at least one free block
# for each sequence, we can append.
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
num_seqs = seq_group.num_seqs(status=SequenceStatus.RUNNING)
return num_seqs <= num_free_gpu_blocks
def append_slot(self, seq: Sequence) -> Optional[Tuple[int, int]]:
"""Allocate a physical slot for a new token."""
logical_blocks = seq.logical_token_blocks
block_table = self.block_tables[seq.seq_id]
if len(block_table) < len(logical_blocks):
if (
self.block_sliding_window
and len(block_table) >= self.block_sliding_window
):
# re-use a block
block_table.append(
block_table[len(block_table) % self.block_sliding_window]
)
else:
# The sequence has a new logical block.
# Allocate a new physical block.
block = self.gpu_allocator.allocate()
block_table.append(block)
return None
# We want to append the token to the last physical block.
last_block = block_table[-1]
assert last_block.device == Device.GPU
if last_block.ref_count == 1:
# Not shared with other sequences. Appendable.
return None
else:
# The last block is shared with other sequences.
# Copy on Write: Allocate a new block and copy the tokens.
new_block = self.gpu_allocator.allocate()
block_table[-1] = new_block
self.gpu_allocator.free(last_block)
return last_block.block_number, new_block.block_number
def fork(self, parent_seq: Sequence, child_seq: Sequence) -> None:
# NOTE: fork does not allocate a new physical block.
# Thus, it is always safe from OOM.
src_block_table = self.block_tables[parent_seq.seq_id]
self.block_tables[child_seq.seq_id] = src_block_table.copy()
for block in src_block_table:
block.ref_count += 1
def _get_physical_blocks(
self, seq_group: SequenceGroup
) -> List[PhysicalTokenBlock]:
# NOTE: Here, we assume that the physical blocks are only shared by
# the sequences in the same group.
blocks: Set[PhysicalTokenBlock] = set()
for seq in seq_group.get_seqs():
if seq.is_finished():
continue
blocks.update(self.block_tables[seq.seq_id])
return list(blocks)
def can_swap_in(self, seq_group: SequenceGroup) -> bool:
blocks = self._get_physical_blocks(seq_group)
num_swapped_seqs = seq_group.num_seqs(status=SequenceStatus.SWAPPED)
num_free_blocks = self.gpu_allocator.get_num_free_blocks()
# NOTE: Conservatively, we assume that every sequence will allocate
# at least one free block right after the swap-in.
# NOTE: This should match the logic in can_append_slot().
num_required_blocks = len(blocks) + num_swapped_seqs
return num_free_blocks - num_required_blocks >= self.watermark_blocks
def swap_in(self, seq_group: SequenceGroup) -> Dict[int, int]:
# CPU block -> GPU block.
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
new_block_table: BlockTable = []
block_table = self.block_tables[seq.seq_id]
for cpu_block in block_table:
if cpu_block in mapping:
gpu_block = mapping[cpu_block]
gpu_block.ref_count += 1
else:
gpu_block = self.gpu_allocator.allocate()
mapping[cpu_block] = gpu_block
new_block_table.append(gpu_block)
# Free the CPU block swapped in to GPU.
self.cpu_allocator.free(cpu_block)
self.block_tables[seq.seq_id] = new_block_table
block_number_mapping = {
cpu_block.block_number: gpu_block.block_number
for cpu_block, gpu_block in mapping.items()
}
return block_number_mapping
def can_swap_out(self, seq_group: SequenceGroup) -> bool:
blocks = self._get_physical_blocks(seq_group)
return len(blocks) <= self.cpu_allocator.get_num_free_blocks()
def swap_out(self, seq_group: SequenceGroup) -> Dict[int, int]:
# GPU block -> CPU block.
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
new_block_table: BlockTable = []
block_table = self.block_tables[seq.seq_id]
for gpu_block in block_table:
if gpu_block in mapping:
cpu_block = mapping[gpu_block]
cpu_block.ref_count += 1
else:
cpu_block = self.cpu_allocator.allocate()
mapping[gpu_block] = cpu_block
new_block_table.append(cpu_block)
# Free the GPU block swapped out to CPU.
self.gpu_allocator.free(gpu_block)
self.block_tables[seq.seq_id] = new_block_table
block_number_mapping = {
gpu_block.block_number: cpu_block.block_number
for gpu_block, cpu_block in mapping.items()
}
return block_number_mapping
def _free_block_table(self, block_table: BlockTable) -> None:
for block in set(block_table):
if block.device == Device.GPU:
self.gpu_allocator.free(block)
else:
self.cpu_allocator.free(block)
def free(self, seq: Sequence) -> None:
if seq.seq_id not in self.block_tables:
# Already freed or haven't been scheduled yet.
return
block_table = self.block_tables[seq.seq_id]
self._free_block_table(block_table)
del self.block_tables[seq.seq_id]
def reset(self) -> None:
for block_table in self.block_tables.values():
self._free_block_table(block_table)
self.block_tables.clear()
def get_block_table(self, seq: Sequence) -> List[int]:
block_table = self.block_tables[seq.seq_id]
return [block.block_number for block in block_table]
def get_num_free_gpu_blocks(self) -> int:
return self.gpu_allocator.get_num_free_blocks()
def get_num_free_cpu_blocks(self) -> int:
return self.cpu_allocator.get_num_free_blocks()