|
"""Utilities for selecting and loading models.""" |
|
|
|
import contextlib |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from vllm.config import ModelConfig |
|
from vllm.model_executor.models import ModelRegistry |
|
from vllm.model_executor.weight_utils import get_quant_config, initialize_dummy_weights |
|
|
|
from .llama import LlamaModel |
|
|
|
|
|
@contextlib.contextmanager |
|
def _set_default_torch_dtype(dtype: torch.dtype): |
|
"""Sets the default torch dtype to the given dtype.""" |
|
old_dtype = torch.get_default_dtype() |
|
torch.set_default_dtype(dtype) |
|
yield |
|
torch.set_default_dtype(old_dtype) |
|
|
|
|
|
def get_model(model_config: ModelConfig) -> nn.Module: |
|
|
|
linear_method = None |
|
if model_config.quantization is not None: |
|
quant_config = get_quant_config( |
|
model_config.quantization, |
|
model_config.model, |
|
model_config.hf_config, |
|
model_config.download_dir, |
|
) |
|
capability = torch.cuda.get_device_capability() |
|
capability = capability[0] * 10 + capability[1] |
|
if capability < quant_config.get_min_capability(): |
|
raise ValueError( |
|
f"The quantization method {model_config.quantization} is not " |
|
"supported for the current GPU. " |
|
f"Minimum capability: {quant_config.get_min_capability()}. " |
|
f"Current capability: {capability}." |
|
) |
|
supported_dtypes = quant_config.get_supported_act_dtypes() |
|
if model_config.dtype not in supported_dtypes: |
|
raise ValueError( |
|
f"{model_config.dtype} is not supported for quantization " |
|
f"method {model_config.quantization}. Supported dtypes: " |
|
f"{supported_dtypes}" |
|
) |
|
linear_method = quant_config.get_linear_method() |
|
|
|
with _set_default_torch_dtype(model_config.dtype): |
|
|
|
|
|
with torch.device("cuda"): |
|
model = LlamaModel(model_config.hf_config, linear_method) |
|
if model_config.load_format == "dummy": |
|
|
|
|
|
initialize_dummy_weights(model) |
|
else: |
|
|
|
model.load_weights( |
|
model_config.model, |
|
model_config.download_dir, |
|
model_config.load_format, |
|
model_config.revision, |
|
) |
|
return model.eval() |
|
|