ChatTTS2 / ChatTTS /model /velocity /model_loader.py
zhengr's picture
init
c02bdcd
"""Utilities for selecting and loading models."""
import contextlib
import torch
import torch.nn as nn
from vllm.config import ModelConfig
from vllm.model_executor.models import ModelRegistry
from vllm.model_executor.weight_utils import get_quant_config, initialize_dummy_weights
from .llama import LlamaModel
@contextlib.contextmanager
def _set_default_torch_dtype(dtype: torch.dtype):
"""Sets the default torch dtype to the given dtype."""
old_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
yield
torch.set_default_dtype(old_dtype)
def get_model(model_config: ModelConfig) -> nn.Module:
# Get the (maybe quantized) linear method.
linear_method = None
if model_config.quantization is not None:
quant_config = get_quant_config(
model_config.quantization,
model_config.model,
model_config.hf_config,
model_config.download_dir,
)
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
if capability < quant_config.get_min_capability():
raise ValueError(
f"The quantization method {model_config.quantization} is not "
"supported for the current GPU. "
f"Minimum capability: {quant_config.get_min_capability()}. "
f"Current capability: {capability}."
)
supported_dtypes = quant_config.get_supported_act_dtypes()
if model_config.dtype not in supported_dtypes:
raise ValueError(
f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}"
)
linear_method = quant_config.get_linear_method()
with _set_default_torch_dtype(model_config.dtype):
# Create a model instance.
# The weights will be initialized as empty tensors.
with torch.device("cuda"):
model = LlamaModel(model_config.hf_config, linear_method)
if model_config.load_format == "dummy":
# NOTE(woosuk): For accurate performance evaluation, we assign
# random values to the weights.
initialize_dummy_weights(model)
else:
# Load the weights from the cached or downloaded files.
model.load_weights(
model_config.model,
model_config.download_dir,
model_config.load_format,
model_config.revision,
)
return model.eval()