ChatTTS2 / ChatTTS /model /velocity /model_runner.py
zhengr's picture
init
c02bdcd
import time
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from .configs import ModelConfig, ParallelConfig, SchedulerConfig
from vllm.logger import init_logger
from .model_loader import get_model
from vllm.model_executor import InputMetadata, SamplingMetadata
from vllm.model_executor.parallel_utils.communication_op import (
broadcast,
broadcast_object_list,
)
from .sampling_params import SamplingParams, SamplingType
from .sequence import (
SamplerOutput,
SequenceData,
SequenceGroupMetadata,
SequenceGroupOutput,
SequenceOutput,
)
from vllm.utils import in_wsl
from ..embed import Embed
from .sampler import Sampler
from safetensors.torch import safe_open
logger = init_logger(__name__)
KVCache = Tuple[torch.Tensor, torch.Tensor]
_PAD_SLOT_ID = -1
# Capture graphs for batch size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
# NOTE: _get_graph_batch_size needs to be updated if this list is changed.
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [8 * i for i in range(1, 33)]
class ModelRunner:
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
is_driver_worker: bool = False,
post_model_path: str = None,
):
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.is_driver_worker = is_driver_worker
self.post_model_path = post_model_path
# model_config can be None in tests/samplers/test_sampler.py.
# FIXME(woosuk): This is a hack to make the tests work. Refactor this.
self.sliding_window = (
model_config.get_sliding_window() if model_config is not None else None
)
self.model = None
self.block_size = None # Set after initial profiling.
self.graph_runners: Dict[int, CUDAGraphRunner] = {}
self.graph_memory_pool = None # Set during graph capture.
self.max_context_len_to_capture = (
self.model_config.max_context_len_to_capture
if self.model_config is not None
else 0
)
# When using CUDA graph, the input block tables must be padded to
# max_context_len_to_capture. However, creating the block table in
# Python can be expensive. To optimize this, we cache the block table
# in numpy and only copy the actual input content at every iteration.
# The shape of the cached block table will be
# (max batch size to capture, max context len to capture / block size).
self.graph_block_tables = None # Set after initial profiling.
# cache in_wsl result
self.in_wsl = in_wsl()
def load_model(self) -> None:
self.model = get_model(self.model_config)
self.post_model = Embed(
self.model_config.get_hidden_size(),
self.model_config.num_audio_tokens,
self.model_config.num_text_tokens,
)
state_dict_tensors = {}
with safe_open(self.post_model_path, framework="pt", device=0) as f:
for k in f.keys():
state_dict_tensors[k] = f.get_tensor(k)
self.post_model.load_state_dict(state_dict_tensors)
self.post_model.to(next(self.model.parameters())).eval()
self.sampler = Sampler(self.post_model, self.model_config.num_audio_tokens, 4)
def set_block_size(self, block_size: int) -> None:
self.block_size = block_size
max_num_blocks = (
self.max_context_len_to_capture + block_size - 1
) // block_size
self.graph_block_tables = np.zeros(
(max(_BATCH_SIZES_TO_CAPTURE), max_num_blocks), dtype=np.int32
)
def _prepare_prompt(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, List[int]]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[List[int]] = []
input_positions: List[List[int]] = []
slot_mapping: List[List[int]] = []
prompt_lens: List[int] = []
for seq_group_metadata in seq_group_metadata_list:
assert seq_group_metadata.is_prompt
seq_ids = list(seq_group_metadata.seq_data.keys())
assert len(seq_ids) == 1
seq_id = seq_ids[0]
seq_data = seq_group_metadata.seq_data[seq_id]
prompt_tokens = seq_data.get_token_ids()
prompt_len = len(prompt_tokens)
prompt_lens.append(prompt_len)
input_tokens.append(prompt_tokens)
# NOTE(woosuk): Here we assume that the first token in the prompt
# is always the first token in the sequence.
input_positions.append(list(range(prompt_len)))
if seq_group_metadata.block_tables is None:
# During memory profiling, the block tables are not initialized
# yet. In this case, we just use a dummy slot mapping.
slot_mapping.append([_PAD_SLOT_ID] * prompt_len)
continue
# Compute the slot mapping.
slot_mapping.append([])
block_table = seq_group_metadata.block_tables[seq_id]
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
# where start_idx is max(0, prompt_len - sliding_window).
# For example, if the prompt len is 10, sliding window is 8, and
# block size is 4, the first two tokens are masked and the slot
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
start_idx = 0
if self.sliding_window is not None:
start_idx = max(0, prompt_len - self.sliding_window)
for i in range(prompt_len):
if i < start_idx:
slot_mapping[-1].append(_PAD_SLOT_ID)
continue
block_number = block_table[i // self.block_size]
block_offset = i % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping[-1].append(slot)
max_prompt_len = max(prompt_lens)
input_tokens = _make_tensor_with_pad(
input_tokens, max_prompt_len, pad=0, dtype=torch.long
)
input_positions = _make_tensor_with_pad(
input_positions, max_prompt_len, pad=0, dtype=torch.long
)
slot_mapping = _make_tensor_with_pad(
slot_mapping, max_prompt_len, pad=_PAD_SLOT_ID, dtype=torch.long
)
input_metadata = InputMetadata(
is_prompt=True,
slot_mapping=slot_mapping,
max_context_len=None,
context_lens=None,
block_tables=None,
use_cuda_graph=False,
)
return input_tokens, input_positions, input_metadata, prompt_lens
def _prepare_decode(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[List[int]] = []
input_positions: List[List[int]] = []
slot_mapping: List[List[int]] = []
context_lens: List[int] = []
block_tables: List[List[int]] = []
for seq_group_metadata in seq_group_metadata_list:
assert not seq_group_metadata.is_prompt
seq_ids = list(seq_group_metadata.seq_data.keys())
for seq_id in seq_ids:
seq_data = seq_group_metadata.seq_data[seq_id]
generation_token = seq_data.get_last_token_id()
input_tokens.append([generation_token])
seq_len = seq_data.get_len()
position = seq_len - 1
input_positions.append([position])
context_len = (
seq_len
if self.sliding_window is None
else min(seq_len, self.sliding_window)
)
context_lens.append(context_len)
block_table = seq_group_metadata.block_tables[seq_id]
block_number = block_table[position // self.block_size]
block_offset = position % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append([slot])
if self.sliding_window is not None:
sliding_window_blocks = self.sliding_window // self.block_size
block_table = block_table[-sliding_window_blocks:]
block_tables.append(block_table)
batch_size = len(input_tokens)
max_context_len = max(context_lens)
use_captured_graph = (
not self.model_config.enforce_eager
and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
and max_context_len <= self.max_context_len_to_capture
)
if use_captured_graph:
# Pad the input tokens, positions, and slot mapping to match the
# batch size of the captured graph.
graph_batch_size = _get_graph_batch_size(batch_size)
assert graph_batch_size >= batch_size
for _ in range(graph_batch_size - batch_size):
input_tokens.append([])
input_positions.append([])
slot_mapping.append([])
context_lens.append(1)
block_tables.append([])
batch_size = graph_batch_size
input_tokens = _make_tensor_with_pad(
input_tokens, max_len=1, pad=0, dtype=torch.long, device="cuda"
)
input_positions = _make_tensor_with_pad(
input_positions, max_len=1, pad=0, dtype=torch.long, device="cuda"
)
slot_mapping = _make_tensor_with_pad(
slot_mapping, max_len=1, pad=_PAD_SLOT_ID, dtype=torch.long, device="cuda"
)
context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda")
if use_captured_graph:
# The shape of graph_block_tables is
# [max batch size, max context len // block size].
input_block_tables = self.graph_block_tables[:batch_size]
for i, block_table in enumerate(block_tables):
if block_table:
input_block_tables[i, : len(block_table)] = block_table
block_tables = torch.tensor(input_block_tables, device="cuda")
else:
block_tables = _make_tensor_with_pad(
block_tables,
max_len=max_context_len,
pad=0,
dtype=torch.int,
device="cuda",
)
input_metadata = InputMetadata(
is_prompt=False,
slot_mapping=slot_mapping,
max_context_len=max_context_len,
context_lens=context_lens,
block_tables=block_tables,
use_cuda_graph=use_captured_graph,
)
return input_tokens, input_positions, input_metadata
def _prepare_sample(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
prompt_lens: List[int],
) -> SamplingMetadata:
seq_groups: List[Tuple[List[int], SamplingParams]] = []
selected_token_indices: List[int] = []
selected_token_start_idx = 0
categorized_sample_indices = {t: [] for t in SamplingType}
categorized_sample_indices_start_idx = 0
max_prompt_len = max(prompt_lens) if prompt_lens else 1
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
seq_ids = list(seq_group_metadata.seq_data.keys())
sampling_params = seq_group_metadata.sampling_params
seq_groups.append((seq_ids, sampling_params))
if seq_group_metadata.is_prompt:
assert len(seq_ids) == 1
prompt_len = prompt_lens[i]
if sampling_params.prompt_logprobs is not None:
# NOTE: prompt token positions do not need sample, skip
categorized_sample_indices_start_idx += prompt_len - 1
categorized_sample_indices[sampling_params.sampling_type].append(
categorized_sample_indices_start_idx
)
categorized_sample_indices_start_idx += 1
if sampling_params.prompt_logprobs is not None:
selected_token_indices.extend(
range(
selected_token_start_idx,
selected_token_start_idx + prompt_len - 1,
)
)
selected_token_indices.append(selected_token_start_idx + prompt_len - 1)
selected_token_start_idx += max_prompt_len
else:
num_seqs = len(seq_ids)
selected_token_indices.extend(
range(selected_token_start_idx, selected_token_start_idx + num_seqs)
)
selected_token_start_idx += num_seqs
categorized_sample_indices[sampling_params.sampling_type].extend(
range(
categorized_sample_indices_start_idx,
categorized_sample_indices_start_idx + num_seqs,
)
)
categorized_sample_indices_start_idx += num_seqs
selected_token_indices = _async_h2d(
selected_token_indices, dtype=torch.long, pin_memory=not self.in_wsl
)
categorized_sample_indices = {
t: _async_h2d(seq_ids, dtype=torch.int, pin_memory=not self.in_wsl)
for t, seq_ids in categorized_sample_indices.items()
}
seq_data: Dict[int, SequenceData] = {}
for seq_group_metadata in seq_group_metadata_list:
seq_data.update(seq_group_metadata.seq_data)
sampling_metadata = SamplingMetadata(
seq_groups=seq_groups,
seq_data=seq_data,
prompt_lens=prompt_lens,
selected_token_indices=selected_token_indices,
categorized_sample_indices=categorized_sample_indices,
)
return sampling_metadata
def prepare_input_tensors(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, SamplingMetadata]:
if self.is_driver_worker:
# NOTE: We assume that all sequences in the group are all prompts or
# all decodes.
is_prompt = seq_group_metadata_list[0].is_prompt
# Prepare input tensors.
if is_prompt:
(input_tokens, input_positions, input_metadata, prompt_lens) = (
self._prepare_prompt(seq_group_metadata_list)
)
else:
(input_tokens, input_positions, input_metadata) = self._prepare_decode(
seq_group_metadata_list
)
prompt_lens = []
sampling_metadata = self._prepare_sample(
seq_group_metadata_list, prompt_lens
)
def get_size_or_none(x: Optional[torch.Tensor]):
return x.size() if x is not None else None
# Broadcast the input data. For input tensors, we first broadcast
# its shape and then broadcast the tensor to avoid high
# serialization cost.
py_data = {
"input_tokens_size": input_tokens.size(),
"input_positions_size": input_positions.size(),
"is_prompt": input_metadata.is_prompt,
"slot_mapping_size": get_size_or_none(input_metadata.slot_mapping),
"max_context_len": input_metadata.max_context_len,
"context_lens_size": get_size_or_none(input_metadata.context_lens),
"block_tables_size": get_size_or_none(input_metadata.block_tables),
"use_cuda_graph": input_metadata.use_cuda_graph,
"selected_token_indices_size": sampling_metadata.selected_token_indices.size(),
}
broadcast_object_list([py_data], src=0)
# TODO(zhuohan): Combine the broadcasts or set async_op=True.
broadcast(input_tokens, src=0)
broadcast(input_positions, src=0)
if input_metadata.slot_mapping is not None:
broadcast(input_metadata.slot_mapping, src=0)
if input_metadata.context_lens is not None:
broadcast(input_metadata.context_lens, src=0)
if input_metadata.block_tables is not None:
broadcast(input_metadata.block_tables, src=0)
broadcast(sampling_metadata.selected_token_indices, src=0)
else:
receving_list = [None]
broadcast_object_list(receving_list, src=0)
py_data = receving_list[0]
input_tokens = torch.empty(
*py_data["input_tokens_size"], dtype=torch.long, device="cuda"
)
broadcast(input_tokens, src=0)
input_positions = torch.empty(
*py_data["input_positions_size"], dtype=torch.long, device="cuda"
)
broadcast(input_positions, src=0)
if py_data["slot_mapping_size"] is not None:
slot_mapping = torch.empty(
*py_data["slot_mapping_size"], dtype=torch.long, device="cuda"
)
broadcast(slot_mapping, src=0)
else:
slot_mapping = None
if py_data["context_lens_size"] is not None:
context_lens = torch.empty(
*py_data["context_lens_size"], dtype=torch.int, device="cuda"
)
broadcast(context_lens, src=0)
else:
context_lens = None
if py_data["block_tables_size"] is not None:
block_tables = torch.empty(
*py_data["block_tables_size"], dtype=torch.int, device="cuda"
)
broadcast(block_tables, src=0)
else:
block_tables = None
selected_token_indices = torch.empty(
*py_data["selected_token_indices_size"], dtype=torch.long, device="cuda"
)
broadcast(selected_token_indices, src=0)
input_metadata = InputMetadata(
is_prompt=py_data["is_prompt"],
slot_mapping=slot_mapping,
max_context_len=py_data["max_context_len"],
context_lens=context_lens,
block_tables=block_tables,
use_cuda_graph=py_data["use_cuda_graph"],
)
sampling_metadata = SamplingMetadata(
seq_groups=None,
seq_data=None,
prompt_lens=None,
selected_token_indices=selected_token_indices,
categorized_sample_indices=None,
perform_sampling=False,
)
return input_tokens, input_positions, input_metadata, sampling_metadata
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
) -> Optional[SamplerOutput]:
input_tokens, input_positions, input_metadata, sampling_metadata = (
self.prepare_input_tensors(seq_group_metadata_list)
)
# print(sampling_metadata.seq_data)
seq_groups = []
input_tokens_history = []
for i, rtn in enumerate(sampling_metadata.seq_groups):
seq_groups.append(rtn[0][0])
tokens_history = sampling_metadata.seq_data[rtn[0][0]].output_token_ids
if len(tokens_history) >= 1:
if len(tokens_history[0]) == 1:
tokens_history = [token[0] for token in tokens_history]
else:
tokens_history = [list(token) for token in tokens_history]
input_tokens_history.append(tokens_history)
input_tokens_history = torch.tensor(input_tokens_history).to(
input_tokens.device
)
# token_ids = rtn.outputs[0].token_ids
# for j, token_id in enumerate(token_ids):
# if len(token_id) == 1:
# token_ids[j] = token_id[0]
# else:
# token_ids[j] = list(token_id)
# Execute the model.
# print("it1",input_tokens)
if len(input_tokens.shape) == 2:
input_tokens = input_tokens.unsqueeze(2).repeat(1, 1, 4)
if len(input_tokens_history.shape) == 2:
input_tokens_history = input_tokens_history.unsqueeze(2).repeat(1, 1, 4)
# print(input_tokens_history.shape)
# print("it2",input_tokens.shape)
text_mask = input_tokens != 0
text_mask = text_mask[:, :, 0]
if input_metadata.use_cuda_graph:
graph_batch_size = input_tokens.shape[0]
model_executable = self.graph_runners[graph_batch_size]
else:
model_executable = self.model
infer_text = sampling_metadata.seq_groups[0][1].infer_text
temperture = sampling_metadata.seq_groups[0][1].temperature
if not infer_text:
temperture = torch.tensor(temperture).to(input_tokens.device)
logits_processors, logits_warpers = sampling_metadata.seq_groups[0][
1
].logits_processors
# print(logits_processors, logits_warpers)
min_new_token = sampling_metadata.seq_groups[0][1].min_new_token
eos_token = sampling_metadata.seq_groups[0][1].eos_token
start_idx = sampling_metadata.seq_groups[0][1].start_idx
if input_tokens.shape[-2] == 1:
if infer_text:
input_emb: torch.Tensor = self.post_model.emb_text(
input_tokens[:, :, 0]
)
else:
code_emb = [
self.post_model.emb_code[i](input_tokens[:, :, i])
for i in range(self.post_model.num_vq)
]
input_emb = torch.stack(code_emb, 3).sum(3)
start_idx = (
input_tokens_history.shape[-2] - 1
if input_tokens_history.shape[-2] > 0
else 0
)
else:
input_emb = self.post_model(input_tokens, text_mask)
# print(input_emb.shape)
hidden_states = model_executable(
input_emb=input_emb,
positions=input_positions,
kv_caches=kv_caches,
input_metadata=input_metadata,
)
# print(hidden_states.shape)
# print(input_tokens)
B_NO_PAD = input_tokens_history.shape[0]
input_tokens = input_tokens[:B_NO_PAD, :, :]
hidden_states = hidden_states[:B_NO_PAD, :, :]
idx_next, logprob, finish = self.sampler.sample(
inputs_ids=(
input_tokens
if input_tokens_history.shape[-2] == 0
else input_tokens_history
),
hidden_states=hidden_states,
infer_text=infer_text,
temperature=temperture,
logits_processors=logits_processors,
logits_warpers=logits_warpers,
min_new_token=min_new_token,
now_length=1,
eos_token=eos_token,
start_idx=start_idx,
)
# print(logprob.shape, idx_next.shape)
if len(logprob.shape) == 2:
logprob = logprob[:, None, :]
logprob = torch.gather(logprob, -1, idx_next.transpose(-1, -2))[:, :, 0]
# print("测试",idx_next.shape, logprob.shape)
# Sample the next token.
# output = self.model.sample(
# hidden_states=hidden_states,
# sampling_metadata=sampling_metadata,
# )
results = []
for i in range(idx_next.shape[0]):
idx_next_i = idx_next[i, 0, :].tolist()
logprob_i = logprob[i].tolist()
tmp_hidden_states = hidden_states[i]
if input_tokens[i].shape[-2] != 1:
tmp_hidden_states = tmp_hidden_states[-1:, :]
result = SequenceGroupOutput(
samples=[
SequenceOutput(
parent_seq_id=seq_groups[i],
logprobs={tuple(idx_next_i): logprob_i},
output_token=tuple(idx_next_i),
hidden_states=tmp_hidden_states,
finished=finish[i].item(),
),
],
prompt_logprobs=None,
)
results.append(result)
# print(results)
# print(idx_next, idx_next.shape, logprob.shape)
return results
@torch.inference_mode()
def profile_run(self) -> None:
# Enable top-k sampling to reflect the accurate memory usage.
vocab_size = self.model_config.get_vocab_size()
sampling_params = SamplingParams(
top_p=0.99, top_k=vocab_size - 1, infer_text=True
)
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
max_num_seqs = self.scheduler_config.max_num_seqs
# Profile memory usage with max_num_sequences sequences and the total
# number of tokens equal to max_num_batched_tokens.
seqs: List[SequenceGroupMetadata] = []
for group_id in range(max_num_seqs):
seq_len = max_num_batched_tokens // max_num_seqs + (
group_id < max_num_batched_tokens % max_num_seqs
)
seq_data = SequenceData([0] * seq_len)
seq = SequenceGroupMetadata(
request_id=str(group_id),
is_prompt=True,
seq_data={group_id: seq_data},
sampling_params=sampling_params,
block_tables=None,
)
seqs.append(seq)
# Run the model with the dummy inputs.
num_layers = self.model_config.get_num_layers(self.parallel_config)
kv_caches = [(None, None)] * num_layers
self.execute_model(seqs, kv_caches)
torch.cuda.synchronize()
return
@torch.inference_mode()
def capture_model(self, kv_caches: List[KVCache]) -> None:
assert not self.model_config.enforce_eager
logger.info(
"Capturing the model for CUDA graphs. This may lead to "
"unexpected consequences if the model is not static. To "
"run the model in eager mode, set 'enforce_eager=True' or "
"use '--enforce-eager' in the CLI."
)
logger.info(
"CUDA graphs can take additional 1~3 GiB memory per GPU. "
"If you are running out of memory, consider decreasing "
"`gpu_memory_utilization` or enforcing eager mode."
)
start_time = time.perf_counter()
# Prepare dummy inputs. These will be reused for all batch sizes.
max_batch_size = max(_BATCH_SIZES_TO_CAPTURE)
input_emb = torch.zeros(
max_batch_size,
1,
self.model_config.get_hidden_size(),
dtype=next(self.model.parameters()).dtype,
).cuda()
input_positions = torch.zeros(max_batch_size, 1, dtype=torch.long).cuda()
slot_mapping = torch.empty(max_batch_size, 1, dtype=torch.long).cuda()
slot_mapping.fill_(_PAD_SLOT_ID)
context_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda()
block_tables = torch.from_numpy(self.graph_block_tables).cuda()
# NOTE: Capturing the largest batch size first may help reduce the
# memory usage of CUDA graph.
for batch_size in reversed(_BATCH_SIZES_TO_CAPTURE):
# Create dummy input_metadata.
input_metadata = InputMetadata(
is_prompt=False,
slot_mapping=slot_mapping[:batch_size],
max_context_len=self.max_context_len_to_capture,
context_lens=context_lens[:batch_size],
block_tables=block_tables[:batch_size],
use_cuda_graph=True,
)
graph_runner = CUDAGraphRunner(self.model)
graph_runner.capture(
input_emb[:batch_size],
input_positions[:batch_size],
kv_caches,
input_metadata,
memory_pool=self.graph_memory_pool,
)
self.graph_memory_pool = graph_runner.graph.pool()
self.graph_runners[batch_size] = graph_runner
end_time = time.perf_counter()
elapsed_time = end_time - start_time
# This usually takes < 10 seconds.
logger.info(f"Graph capturing finished in {elapsed_time:.0f} secs.")
class CUDAGraphRunner:
def __init__(self, model: nn.Module):
self.model = model
self.graph = None
self.input_buffers: Dict[str, torch.Tensor] = {}
self.output_buffers: Dict[str, torch.Tensor] = {}
def capture(
self,
input_emb: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
memory_pool,
) -> None:
assert self.graph is None
# Run the model once without capturing the graph.
# This is to make sure that the captured graph does not include the
# kernel launches for initial benchmarking (e.g., Triton autotune).
self.model(
input_emb,
positions,
kv_caches,
input_metadata,
)
torch.cuda.synchronize()
# Capture the graph.
self.graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.graph, pool=memory_pool):
hidden_states = self.model(
input_emb,
positions,
kv_caches,
input_metadata,
)
torch.cuda.synchronize()
# Save the input and output buffers.
self.input_buffers = {
"input_emb": input_emb,
"positions": positions,
"kv_caches": kv_caches,
"slot_mapping": input_metadata.slot_mapping,
"context_lens": input_metadata.context_lens,
"block_tables": input_metadata.block_tables,
}
self.output_buffers = {"hidden_states": hidden_states}
return
def forward(
self,
input_emb: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
input_metadata: InputMetadata,
) -> torch.Tensor:
# KV caches are fixed tensors, so we don't need to copy them.
del kv_caches
# Copy the input tensors to the input buffers.
self.input_buffers["input_emb"].copy_(input_emb, non_blocking=True)
self.input_buffers["positions"].copy_(positions, non_blocking=True)
self.input_buffers["slot_mapping"].copy_(
input_metadata.slot_mapping, non_blocking=True
)
self.input_buffers["context_lens"].copy_(
input_metadata.context_lens, non_blocking=True
)
self.input_buffers["block_tables"].copy_(
input_metadata.block_tables, non_blocking=True
)
# Run the graph.
self.graph.replay()
# Return the output tensor.
return self.output_buffers["hidden_states"]
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def _pad_to_max(x: List[int], max_len: int, pad: int) -> List[int]:
assert len(x) <= max_len
if len(x) == max_len:
return list(x)
return list(x) + [pad] * (max_len - len(x))
def _make_tensor_with_pad(
x: List[List[int]],
max_len: int,
pad: int,
dtype: torch.dtype,
device: Union[str, torch.device] = "cuda",
pin_memory: bool = False,
) -> torch.Tensor:
padded_x = []
for x_i in x:
pad_i = pad
if isinstance(x[0][0], tuple):
pad_i = (0,) * len(x[0][0])
padded_x.append(_pad_to_max(x_i, max_len, pad_i))
return torch.tensor(
padded_x,
dtype=dtype,
device=device,
pin_memory=pin_memory and str(device) == "cpu",
)
def _get_graph_batch_size(batch_size: int) -> int:
if batch_size <= 2:
return batch_size
elif batch_size <= 4:
return 4
else:
return (batch_size + 7) // 8 * 8
def _async_h2d(data: list, dtype, pin_memory):
t = torch.tensor(data, dtype=dtype, pin_memory=pin_memory)
return t.to(device="cuda", non_blocking=True)