import os import logging import tempfile from dataclasses import dataclass, asdict from typing import Literal, Optional, List, Tuple, Dict, Union from json import load from pathlib import Path import numpy as np import torch from vocos import Vocos from vocos.pretrained import instantiate_class from huggingface_hub import snapshot_download from .config import Config from .model import DVAE, Embed, GPT, gen_logits, Tokenizer, Speaker from .utils import ( check_all_assets, download_all_assets, select_device, get_latest_modified_file, del_all, ) from .utils import logger as utils_logger from .norm import Normalizer class Chat: def __init__(self, logger=logging.getLogger(__name__)): self.logger = logger utils_logger.set_logger(logger) self.config = Config() self.normalizer = Normalizer( os.path.join(os.path.dirname(__file__), "res", "homophones_map.json"), logger, ) with open( os.path.join(os.path.dirname(__file__), "res", "sha256_map.json") ) as f: self.sha256_map: Dict[str, str] = load(f) self.context = GPT.Context() def has_loaded(self, use_decoder=False): not_finish = False check_list = ["vocos", "gpt", "tokenizer", "embed"] if use_decoder: check_list.append("decoder") else: check_list.append("dvae") for module in check_list: if not hasattr(self, module): self.logger.warning(f"{module} not initialized.") not_finish = True return not not_finish def download_models( self, source: Literal["huggingface", "local", "custom"] = "local", force_redownload=False, custom_path: Optional[torch.serialization.FILE_LIKE] = None, ) -> Optional[str]: if source == "local": download_path = os.getcwd() if ( not check_all_assets(Path(download_path), self.sha256_map, update=True) or force_redownload ): with tempfile.TemporaryDirectory() as tmp: download_all_assets(tmpdir=tmp) if not check_all_assets( Path(download_path), self.sha256_map, update=False ): self.logger.error( "download to local path %s failed.", download_path ) return None elif source == "huggingface": hf_home = os.getenv("HF_HOME", os.path.expanduser("~/.cache/huggingface")) try: download_path = get_latest_modified_file( os.path.join(hf_home, "hub/models--2Noise--ChatTTS/snapshots") ) except: download_path = None if download_path is None or force_redownload: self.logger.log( logging.INFO, f"download from HF: https://huggingface.co/2Noise/ChatTTS", ) try: download_path = snapshot_download( repo_id="2Noise/ChatTTS", allow_patterns=["*.pt", "*.yaml", "*.json", "*.safetensors"], ) except: download_path = None else: self.logger.log( logging.INFO, f"load latest snapshot from cache: {download_path}" ) if download_path is None: self.logger.error("download from huggingface failed.") return None elif source == "custom": self.logger.log(logging.INFO, f"try to load from local: {custom_path}") if not check_all_assets(Path(custom_path), self.sha256_map, update=False): self.logger.error("check models in custom path %s failed.", custom_path) return None download_path = custom_path return download_path def load( self, source: Literal["huggingface", "local", "custom"] = "local", force_redownload=False, compile: bool = False, custom_path: Optional[torch.serialization.FILE_LIKE] = None, device: Optional[torch.device] = None, coef: Optional[torch.Tensor] = None, use_flash_attn=False, use_vllm=False, experimental: bool = False, ) -> bool: download_path = self.download_models(source, force_redownload, custom_path) if download_path is None: return False return self._load( device=device, compile=compile, coef=coef, use_flash_attn=use_flash_attn, use_vllm=use_vllm, experimental=experimental, **{ k: os.path.join(download_path, v) for k, v in asdict(self.config.path).items() }, ) def unload(self): logger = self.logger self.normalizer.destroy() del self.normalizer del self.sha256_map del_list = ["vocos", "gpt", "decoder", "dvae", "tokenizer", "embed"] for module in del_list: if hasattr(self, module): delattr(self, module) self.__init__(logger) def sample_random_speaker(self) -> str: return self.speaker.sample_random() def sample_audio_speaker(self, wav: Union[np.ndarray, torch.Tensor]) -> str: return self.speaker.encode_prompt(self.dvae.sample_audio(wav)) @dataclass(repr=False, eq=False) class RefineTextParams: prompt: str = "" top_P: float = 0.7 top_K: int = 20 temperature: float = 0.7 repetition_penalty: float = 1.0 max_new_token: int = 384 min_new_token: int = 0 show_tqdm: bool = True ensure_non_empty: bool = True manual_seed: Optional[int] = None @dataclass(repr=False, eq=False) class InferCodeParams(RefineTextParams): prompt: str = "[speed_5]" spk_emb: Optional[str] = None spk_smp: Optional[str] = None txt_smp: Optional[str] = None temperature: float = 0.3 repetition_penalty: float = 1.05 max_new_token: int = 2048 stream_batch: int = 24 stream_speed: int = 12000 pass_first_n_batches: int = 2 def infer( self, text, stream=False, lang=None, skip_refine_text=False, refine_text_only=False, use_decoder=True, do_text_normalization=True, do_homophone_replacement=True, params_refine_text=RefineTextParams(), params_infer_code=InferCodeParams(), ): self.context.set(False) res_gen = self._infer( text, stream, lang, skip_refine_text, refine_text_only, use_decoder, do_text_normalization, do_homophone_replacement, params_refine_text, params_infer_code, ) if stream: return res_gen else: return next(res_gen) def interrupt(self): self.context.set(True) @torch.no_grad() def _load( self, vocos_ckpt_path: str = None, dvae_ckpt_path: str = None, gpt_ckpt_path: str = None, embed_path: str = None, decoder_ckpt_path: str = None, tokenizer_path: str = None, device: Optional[torch.device] = None, compile: bool = False, coef: Optional[str] = None, use_flash_attn=False, use_vllm=False, experimental: bool = False, ): if device is None: device = select_device(experimental=experimental) self.logger.info("use device %s", str(device)) self.device = device self.device_gpt = device if "mps" not in str(device) else torch.device("cpu") self.compile = compile feature_extractor = instantiate_class( args=(), init=asdict(self.config.vocos.feature_extractor) ) backbone = instantiate_class(args=(), init=asdict(self.config.vocos.backbone)) head = instantiate_class(args=(), init=asdict(self.config.vocos.head)) vocos = ( Vocos(feature_extractor=feature_extractor, backbone=backbone, head=head) .to( # vocos on mps will crash, use cpu fallback "cpu" if "mps" in str(device) else device ) .eval() ) assert vocos_ckpt_path, "vocos_ckpt_path should not be None" vocos.load_state_dict(torch.load(vocos_ckpt_path, weights_only=True, mmap=True)) self.vocos = vocos self.logger.log(logging.INFO, "vocos loaded.") dvae = ( DVAE( decoder_config=asdict(self.config.dvae.decoder), encoder_config=asdict(self.config.dvae.encoder), vq_config=asdict(self.config.dvae.vq), dim=self.config.dvae.decoder.idim, coef=coef, device=device, ) .to(device) .eval() ) coef = str(dvae) assert dvae_ckpt_path, "dvae_ckpt_path should not be None" dvae.load_state_dict(torch.load(dvae_ckpt_path, weights_only=True, mmap=True)) self.dvae = dvae self.logger.log(logging.INFO, "dvae loaded.") embed = Embed( self.config.embed.hidden_size, self.config.embed.num_audio_tokens, self.config.embed.num_text_tokens, self.config.embed.num_vq, ) embed.from_pretrained(embed_path, device=device) self.embed = embed.to(device) self.logger.log(logging.INFO, "embed loaded.") gpt = GPT( gpt_config=asdict(self.config.gpt), embed=self.embed, use_flash_attn=use_flash_attn, use_vllm=use_vllm, device=device, device_gpt=self.device_gpt, logger=self.logger, ).eval() assert gpt_ckpt_path, "gpt_ckpt_path should not be None" gpt.from_pretrained(gpt_ckpt_path, embed_path, experimental=experimental) gpt.prepare(compile=compile and "cuda" in str(device)) self.gpt = gpt self.logger.log(logging.INFO, "gpt loaded.") self.speaker = Speaker( self.config.gpt.hidden_size, self.config.spk_stat, device ) self.logger.log(logging.INFO, "speaker loaded.") decoder = ( DVAE( decoder_config=asdict(self.config.decoder), dim=self.config.decoder.idim, coef=coef, device=device, ) .to(device) .eval() ) coef = str(decoder) assert decoder_ckpt_path, "decoder_ckpt_path should not be None" decoder.load_state_dict( torch.load(decoder_ckpt_path, weights_only=True, mmap=True) ) self.decoder = decoder self.logger.log(logging.INFO, "decoder loaded.") if tokenizer_path: self.tokenizer = Tokenizer(tokenizer_path) self.logger.log(logging.INFO, "tokenizer loaded.") self.coef = coef return self.has_loaded() def _infer( self, text, stream=False, lang=None, skip_refine_text=False, refine_text_only=False, use_decoder=True, do_text_normalization=True, do_homophone_replacement=True, params_refine_text=RefineTextParams(), params_infer_code=InferCodeParams(), ): assert self.has_loaded(use_decoder=use_decoder) if not isinstance(text, list): text = [text] text = [ self.normalizer( t, do_text_normalization, do_homophone_replacement, lang, ) for t in text ] self.logger.debug("normed texts %s", str(text)) if not skip_refine_text: refined = self._refine_text( text, self.device, params_refine_text, ) text_tokens = refined.ids text_tokens = [i[i.less(self.tokenizer.break_0_ids)] for i in text_tokens] text = self.tokenizer.decode(text_tokens) refined.destroy() if refine_text_only: yield text return if stream: length = 0 pass_batch_count = 0 for result in self._infer_code( text, stream, self.device, use_decoder, params_infer_code, ): wavs = self._decode_to_wavs( result.hiddens if use_decoder else result.ids, use_decoder, ) result.destroy() if stream: pass_batch_count += 1 if pass_batch_count <= params_infer_code.pass_first_n_batches: continue a = length b = a + params_infer_code.stream_speed if b > wavs.shape[1]: b = wavs.shape[1] new_wavs = wavs[:, a:b] length = b yield new_wavs else: yield wavs if stream: new_wavs = wavs[:, length:] # Identify rows with non-zero elements using np.any # keep_rows = np.any(array != 0, axis=1) keep_cols = np.sum(new_wavs != 0, axis=0) > 0 # Filter both rows and columns using slicing yield new_wavs[:][:, keep_cols] @torch.inference_mode() def _vocos_decode(self, spec: torch.Tensor) -> np.ndarray: if "mps" in str(self.device): return self.vocos.decode(spec.cpu()).cpu().numpy() else: return self.vocos.decode(spec).cpu().numpy() @torch.inference_mode() def _decode_to_wavs( self, result_list: List[torch.Tensor], use_decoder: bool, ): decoder = self.decoder if use_decoder else self.dvae max_x_len = -1 if len(result_list) == 0: return np.array([], dtype=np.float32) for result in result_list: if result.size(0) > max_x_len: max_x_len = result.size(0) batch_result = torch.zeros( (len(result_list), result_list[0].size(1), max_x_len), dtype=result_list[0].dtype, device=result_list[0].device, ) for i in range(len(result_list)): src = result_list[i] batch_result[i].narrow(1, 0, src.size(0)).copy_(src.permute(1, 0)) del src del_all(result_list) mel_specs = decoder(batch_result) del batch_result wavs = self._vocos_decode(mel_specs) del mel_specs return wavs @torch.no_grad() def _infer_code( self, text: Tuple[List[str], str], stream: bool, device: torch.device, return_hidden: bool, params: InferCodeParams, ): gpt = self.gpt if not isinstance(text, list): text = [text] assert len(text), "text should not be empty" if not isinstance(params.temperature, list): temperature = [params.temperature] * self.config.gpt.num_vq else: temperature = params.temperature input_ids, attention_mask, text_mask = self.tokenizer.encode( self.speaker.decorate_code_prompts( text, params.prompt, params.txt_smp, params.spk_emb, ), self.config.gpt.num_vq, prompt=( self.speaker.decode_prompt(params.spk_smp) if params.spk_smp is not None else None ), device=self.device_gpt, ) start_idx = input_ids.shape[-2] num_code = self.config.gpt.num_audio_tokens - 1 logits_warpers, logits_processors = gen_logits( num_code=num_code, top_P=params.top_P, top_K=params.top_K, repetition_penalty=params.repetition_penalty, ) if gpt.is_vllm: from .model.velocity import SamplingParams sample_params = SamplingParams( temperature=temperature, max_new_token=params.max_new_token, max_tokens=8192, min_new_token=params.min_new_token, logits_processors=(logits_processors, logits_warpers), eos_token=num_code, infer_text=False, start_idx=start_idx, ) input_ids = [i.tolist() for i in input_ids] result = gpt.llm.generate( None, sample_params, input_ids, ) token_ids = [] hidden_states = [] for i in result: token_ids.append(torch.tensor(i.outputs[0].token_ids)) hidden_states.append( i.outputs[0].hidden_states.to(torch.float32).to(self.device) ) del text_mask, input_ids return [ GPT.GenerationOutputs( ids=token_ids, hiddens=hidden_states, attentions=[], ), ] emb = self.embed(input_ids, text_mask) del text_mask if params.spk_emb is not None: self.speaker.apply( emb, params.spk_emb, input_ids, self.tokenizer.spk_emb_ids, self.gpt.device_gpt, ) result = gpt.generate( emb, input_ids, temperature=torch.tensor(temperature, device=device), eos_token=num_code, attention_mask=attention_mask, max_new_token=params.max_new_token, min_new_token=params.min_new_token, logits_processors=(*logits_processors, *logits_warpers), infer_text=False, return_hidden=return_hidden, stream=stream, show_tqdm=params.show_tqdm, ensure_non_empty=params.ensure_non_empty, stream_batch=params.stream_batch, manual_seed=params.manual_seed, context=self.context, ) del emb, input_ids return result @torch.no_grad() def _refine_text( self, text: str, device: torch.device, params: RefineTextParams, ): gpt = self.gpt if not isinstance(text, list): text = [text] input_ids, attention_mask, text_mask = self.tokenizer.encode( self.speaker.decorate_text_prompts(text, params.prompt), self.config.gpt.num_vq, device=self.device_gpt, ) logits_warpers, logits_processors = gen_logits( num_code=self.tokenizer.len, top_P=params.top_P, top_K=params.top_K, repetition_penalty=params.repetition_penalty, ) if gpt.is_vllm: from .model.velocity import SamplingParams sample_params = SamplingParams( repetition_penalty=params.repetition_penalty, temperature=params.temperature, top_p=params.top_P, top_k=params.top_K, max_new_token=params.max_new_token, max_tokens=8192, min_new_token=params.min_new_token, logits_processors=(logits_processors, logits_warpers), eos_token=self.tokenizer.eos_token, infer_text=True, start_idx=input_ids.shape[-2], ) input_ids_list = [i.tolist() for i in input_ids] del input_ids result = gpt.llm.generate( None, sample_params, input_ids_list, params.show_tqdm ) token_ids = [] hidden_states = [] for i in result: token_ids.append(torch.tensor(i.outputs[0].token_ids)) hidden_states.append(i.outputs[0].hidden_states) del text_mask, input_ids_list, result return GPT.GenerationOutputs( ids=token_ids, hiddens=hidden_states, attentions=[], ) emb = self.embed(input_ids, text_mask) del text_mask result = next( gpt.generate( emb, input_ids, temperature=torch.tensor([params.temperature], device=device), eos_token=self.tokenizer.eos_token, attention_mask=attention_mask, max_new_token=params.max_new_token, min_new_token=params.min_new_token, logits_processors=(*logits_processors, *logits_warpers), infer_text=True, stream=False, show_tqdm=params.show_tqdm, ensure_non_empty=params.ensure_non_empty, manual_seed=params.manual_seed, context=self.context, ) ) del emb, input_ids return result