from typing import List, Optional import torch from .sequence import ( PromptLogprobs, SampleLogprobs, SequenceGroup, SequenceStatus, ) class CompletionOutput: """The output data of one completion output of a request. Args: index: The index of the output in the request. text: The generated output text. token_ids: The token IDs of the generated output text. cumulative_logprob: The cumulative log probability of the generated output text. logprobs: The log probabilities of the top probability words at each position if the logprobs are requested. finish_reason: The reason why the sequence is finished. """ def __init__( self, index: int, text: str, token_ids: List[int], cumulative_logprob: float, logprobs: Optional[SampleLogprobs], finish_reason: Optional[str] = None, hidden_states: Optional[torch.Tensor] = None, ) -> None: self.index = index self.text = text self.token_ids = token_ids self.cumulative_logprob = cumulative_logprob self.logprobs = logprobs self.finish_reason = finish_reason self.hidden_states = hidden_states def finished(self) -> bool: return self.finish_reason is not None def __repr__(self) -> str: return ( f"CompletionOutput(index={self.index}, " f"text={self.text!r}, " f"token_ids={self.token_ids}, " f"cumulative_logprob={self.cumulative_logprob}, " f"logprobs={self.logprobs}, " f"finish_reason={self.finish_reason}, " f"hidden_states={self.hidden_states.shape if self.hidden_states is not None else None})" ) class RequestOutput: """The output data of a request to the LLM. Args: request_id: The unique ID of the request. prompt: The prompt string of the request. prompt_token_ids: The token IDs of the prompt. prompt_logprobs: The log probabilities to return per prompt token. outputs: The output sequences of the request. finished: Whether the whole request is finished. """ def __init__( self, request_id: str, prompt: str, prompt_token_ids: List[int], prompt_logprobs: Optional[PromptLogprobs], outputs: List[CompletionOutput], finished: bool, ) -> None: self.request_id = request_id self.prompt = prompt self.prompt_token_ids = prompt_token_ids self.prompt_logprobs = prompt_logprobs self.outputs = outputs self.finished = finished @classmethod def from_seq_group(cls, seq_group: SequenceGroup) -> "RequestOutput": # Get the top-n sequences. n = seq_group.sampling_params.n seqs = seq_group.get_seqs() if seq_group.sampling_params.use_beam_search: sorting_key = lambda seq: seq.get_beam_search_score( seq_group.sampling_params.length_penalty ) else: sorting_key = lambda seq: seq.get_cumulative_logprob() sorted_seqs = sorted(seqs, key=sorting_key, reverse=True) top_n_seqs = sorted_seqs[:n] # Create the outputs. outputs: List[CompletionOutput] = [] for seq in top_n_seqs: logprobs = seq.output_logprobs if seq_group.sampling_params.logprobs is None: # NOTE: We need to take care of this case because the sequence # always has the logprobs of the sampled tokens even if the # logprobs are not requested. logprobs = None finshed_reason = SequenceStatus.get_finished_reason(seq.status) output = CompletionOutput( seqs.index(seq), seq.output_text, seq.get_output_token_ids(), seq.get_cumulative_logprob(), logprobs, finshed_reason, seq.data.hidden_states, ) outputs.append(output) # Every sequence in the sequence group should have the same prompt. prompt = seq_group.prompt prompt_token_ids = seq_group.prompt_token_ids prompt_logprobs = seq_group.prompt_logprobs finished = seq_group.is_finished() return cls( seq_group.request_id, prompt, prompt_token_ids, prompt_logprobs, outputs, finished, ) def __repr__(self) -> str: return ( f"RequestOutput(request_id={self.request_id}, " f"prompt={self.prompt!r}, " f"prompt_token_ids={self.prompt_token_ids}, " f"prompt_logprobs={self.prompt_logprobs}, " f"outputs={self.outputs}, " f"finished={self.finished})" )