import json import logging import re from typing import Dict, Tuple, List, Literal, Callable, Optional import sys from numba import jit import numpy as np from .utils import del_all @jit def _find_index(table: np.ndarray, val: np.uint16): for i in range(table.size): if table[i] == val: return i return -1 @jit def _fast_replace( table: np.ndarray, text: bytes ) -> Tuple[np.ndarray, List[Tuple[str, str]]]: result = np.frombuffer(text, dtype=np.uint16).copy() replaced_words = [] for i in range(result.size): ch = result[i] p = _find_index(table[0], ch) if p >= 0: repl_char = table[1][p] result[i] = repl_char replaced_words.append((chr(ch), chr(repl_char))) return result, replaced_words @jit def _split_tags(text: str) -> Tuple[List[str], List[str]]: texts: List[str] = [] tags: List[str] = [] current_text = "" current_tag = "" for c in text: if c == "[": texts.append(current_text) current_text = "" current_tag = c elif current_tag != "": current_tag += c else: current_text += c if c == "]": tags.append(current_tag) current_tag = "" if current_text != "": texts.append(current_text) return texts, tags @jit def _combine_tags(texts: List[str], tags: List[str]) -> str: text = "" for t in texts: tg = "" if len(tags) > 0: tg = tags.pop(0) text += t + tg return text class Normalizer: def __init__(self, map_file_path: str, logger=logging.getLogger(__name__)): self.logger = logger self.normalizers: Dict[str, Callable[[str], str]] = {} self.homophones_map = self._load_homophones_map(map_file_path) """ homophones_map Replace the mispronounced characters with correctly pronounced ones. Creation process of homophones_map.json: 1. Establish a word corpus using the [Tencent AI Lab Embedding Corpora v0.2.0 large] with 12 million entries. After cleaning, approximately 1.8 million entries remain. Use ChatTTS to infer the text. 2. Record discrepancies between the inferred and input text, identifying about 180,000 misread words. 3. Create a pinyin to common characters mapping using correctly read characters by ChatTTS. 4. For each discrepancy, extract the correct pinyin using [python-pinyin] and find homophones with the correct pronunciation from the mapping. Thanks to: [Tencent AI Lab Embedding Corpora for Chinese and English Words and Phrases](https://ai.tencent.com/ailab/nlp/en/embedding.html) [python-pinyin](https://github.com/mozillazg/python-pinyin) """ self.coding = "utf-16-le" if sys.byteorder == "little" else "utf-16-be" self.reject_pattern = re.compile(r"[^\u4e00-\u9fffA-Za-z,。、,\. ]") self.sub_pattern = re.compile(r"\[[\w_]+\]") self.chinese_char_pattern = re.compile(r"[\u4e00-\u9fff]") self.english_word_pattern = re.compile(r"\b[A-Za-z]+\b") self.character_simplifier = str.maketrans( { ":": ",", ";": ",", "!": "。", "(": ",", ")": ",", "【": ",", "】": ",", "『": ",", "』": ",", "「": ",", "」": ",", "《": ",", "》": ",", "-": ",", ":": ",", ";": ",", "!": ".", "(": ",", ")": ",", # "[": ",", # "]": ",", ">": ",", "<": ",", "-": ",", } ) self.halfwidth_2_fullwidth = str.maketrans( { "!": "!", '"': "“", "'": "‘", "#": "#", "$": "$", "%": "%", "&": "&", "(": "(", ")": ")", ",": ",", "-": "-", "*": "*", "+": "+", ".": "。", "/": "/", ":": ":", ";": ";", "<": "<", "=": "=", ">": ">", "?": "?", "@": "@", # '[': '[', "\\": "\", # ']': ']', "^": "^", # '_': '_', "`": "`", "{": "{", "|": "|", "}": "}", "~": "~", } ) def __call__( self, text: str, do_text_normalization=True, do_homophone_replacement=True, lang: Optional[Literal["zh", "en"]] = None, ) -> str: if do_text_normalization: _lang = self._detect_language(text) if lang is None else lang if _lang in self.normalizers: texts, tags = _split_tags(text) self.logger.debug("split texts %s, tags %s", str(texts), str(tags)) texts = [self.normalizers[_lang](t) for t in texts] self.logger.debug("normed texts %s", str(texts)) text = _combine_tags(texts, tags) if len(tags) > 0 else texts[0] self.logger.debug("combined text %s", text) if _lang == "zh": text = self._apply_half2full_map(text) invalid_characters = self._count_invalid_characters(text) if len(invalid_characters): self.logger.warning(f"found invalid characters: {invalid_characters}") text = self._apply_character_map(text) if do_homophone_replacement: arr, replaced_words = _fast_replace( self.homophones_map, text.encode(self.coding), ) if replaced_words: text = arr.tobytes().decode(self.coding) repl_res = ", ".join([f"{_[0]}->{_[1]}" for _ in replaced_words]) self.logger.info(f"replace homophones: {repl_res}") if len(invalid_characters): texts, tags = _split_tags(text) self.logger.debug("split texts %s, tags %s", str(texts), str(tags)) texts = [self.reject_pattern.sub("", t) for t in texts] self.logger.debug("normed texts %s", str(texts)) text = _combine_tags(texts, tags) if len(tags) > 0 else texts[0] self.logger.debug("combined text %s", text) return text def register(self, name: str, normalizer: Callable[[str], str]) -> bool: if name in self.normalizers: self.logger.warning(f"name {name} has been registered") return False try: val = normalizer("test string 测试字符串") if not isinstance(val, str): self.logger.warning("normalizer must have caller type (str) -> str") return False except Exception as e: self.logger.warning(e) return False self.normalizers[name] = normalizer return True def unregister(self, name: str): if name in self.normalizers: del self.normalizers[name] def destroy(self): del_all(self.normalizers) del self.homophones_map def _load_homophones_map(self, map_file_path: str) -> np.ndarray: with open(map_file_path, "r", encoding="utf-8") as f: homophones_map: Dict[str, str] = json.load(f) map = np.empty((2, len(homophones_map)), dtype=np.uint32) for i, k in enumerate(homophones_map.keys()): map[:, i] = (ord(k), ord(homophones_map[k])) del homophones_map return map def _count_invalid_characters(self, s: str): s = self.sub_pattern.sub("", s) non_alphabetic_chinese_chars = self.reject_pattern.findall(s) return set(non_alphabetic_chinese_chars) def _apply_half2full_map(self, text: str) -> str: return text.translate(self.halfwidth_2_fullwidth) def _apply_character_map(self, text: str) -> str: return text.translate(self.character_simplifier) def _detect_language(self, sentence: str) -> Literal["zh", "en"]: chinese_chars = self.chinese_char_pattern.findall(sentence) english_words = self.english_word_pattern.findall(sentence) if len(chinese_chars) > len(english_words): return "zh" else: return "en"