Spaces:
Build error
Build error
File size: 4,043 Bytes
e62781a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
#!/usr/bin/env python3
# Copyright 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Data processing/loading helpers."""
import numpy as np
import logging
import unicodedata
from torch.utils.data import Dataset
from torch.utils.data.sampler import Sampler
from .vector import vectorize
logger = logging.getLogger(__name__)
# ------------------------------------------------------------------------------
# Dictionary class for tokens.
# ------------------------------------------------------------------------------
class Dictionary(object):
NULL = '<NULL>'
UNK = '<UNK>'
START = 2
@staticmethod
def normalize(token):
return unicodedata.normalize('NFD', token)
def __init__(self):
self.tok2ind = {self.NULL: 0, self.UNK: 1}
self.ind2tok = {0: self.NULL, 1: self.UNK}
def __len__(self):
return len(self.tok2ind)
def __iter__(self):
return iter(self.tok2ind)
def __contains__(self, key):
if type(key) == int:
return key in self.ind2tok
elif type(key) == str:
return self.normalize(key) in self.tok2ind
def __getitem__(self, key):
if type(key) == int:
return self.ind2tok.get(key, self.UNK)
if type(key) == str:
return self.tok2ind.get(self.normalize(key),
self.tok2ind.get(self.UNK))
def __setitem__(self, key, item):
if type(key) == int and type(item) == str:
self.ind2tok[key] = item
elif type(key) == str and type(item) == int:
self.tok2ind[key] = item
else:
raise RuntimeError('Invalid (key, item) types.')
def add(self, token):
token = self.normalize(token)
if token not in self.tok2ind:
index = len(self.tok2ind)
self.tok2ind[token] = index
self.ind2tok[index] = token
def tokens(self):
"""Get dictionary tokens.
Return all the words indexed by this dictionary, except for special
tokens.
"""
tokens = [k for k in self.tok2ind.keys()
if k not in {'<NULL>', '<UNK>'}]
return tokens
# ------------------------------------------------------------------------------
# PyTorch dataset class for SQuAD (and SQuAD-like) data.
# ------------------------------------------------------------------------------
class ReaderDataset(Dataset):
def __init__(self, examples, model, single_answer=False):
self.model = model
self.examples = examples
self.single_answer = single_answer
def __len__(self):
return len(self.examples)
def __getitem__(self, index):
return vectorize(self.examples[index], self.model, self.single_answer)
def lengths(self):
return [(len(ex['document']), len(ex['question']))
for ex in self.examples]
# ------------------------------------------------------------------------------
# PyTorch sampler returning batched of sorted lengths (by doc and question).
# ------------------------------------------------------------------------------
class SortedBatchSampler(Sampler):
def __init__(self, lengths, batch_size, shuffle=True):
self.lengths = lengths
self.batch_size = batch_size
self.shuffle = shuffle
def __iter__(self):
lengths = np.array(
[(-l[0], -l[1], np.random.random()) for l in self.lengths],
dtype=[('l1', np.int_), ('l2', np.int_), ('rand', np.float_)]
)
indices = np.argsort(lengths, order=('l1', 'l2', 'rand'))
batches = [indices[i:i + self.batch_size]
for i in range(0, len(indices), self.batch_size)]
if self.shuffle:
np.random.shuffle(batches)
return iter([i for batch in batches for i in batch])
def __len__(self):
return len(self.lengths)
|