File size: 4,043 Bytes
e62781a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python3
# Copyright 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Data processing/loading helpers."""

import numpy as np
import logging
import unicodedata

from torch.utils.data import Dataset
from torch.utils.data.sampler import Sampler
from .vector import vectorize

logger = logging.getLogger(__name__)


# ------------------------------------------------------------------------------
# Dictionary class for tokens.
# ------------------------------------------------------------------------------


class Dictionary(object):
    NULL = '<NULL>'
    UNK = '<UNK>'
    START = 2

    @staticmethod
    def normalize(token):
        return unicodedata.normalize('NFD', token)

    def __init__(self):
        self.tok2ind = {self.NULL: 0, self.UNK: 1}
        self.ind2tok = {0: self.NULL, 1: self.UNK}

    def __len__(self):
        return len(self.tok2ind)

    def __iter__(self):
        return iter(self.tok2ind)

    def __contains__(self, key):
        if type(key) == int:
            return key in self.ind2tok
        elif type(key) == str:
            return self.normalize(key) in self.tok2ind

    def __getitem__(self, key):
        if type(key) == int:
            return self.ind2tok.get(key, self.UNK)
        if type(key) == str:
            return self.tok2ind.get(self.normalize(key),
                                    self.tok2ind.get(self.UNK))

    def __setitem__(self, key, item):
        if type(key) == int and type(item) == str:
            self.ind2tok[key] = item
        elif type(key) == str and type(item) == int:
            self.tok2ind[key] = item
        else:
            raise RuntimeError('Invalid (key, item) types.')

    def add(self, token):
        token = self.normalize(token)
        if token not in self.tok2ind:
            index = len(self.tok2ind)
            self.tok2ind[token] = index
            self.ind2tok[index] = token

    def tokens(self):
        """Get dictionary tokens.

        Return all the words indexed by this dictionary, except for special
        tokens.
        """
        tokens = [k for k in self.tok2ind.keys()
                  if k not in {'<NULL>', '<UNK>'}]
        return tokens


# ------------------------------------------------------------------------------
# PyTorch dataset class for SQuAD (and SQuAD-like) data.
# ------------------------------------------------------------------------------


class ReaderDataset(Dataset):

    def __init__(self, examples, model, single_answer=False):
        self.model = model
        self.examples = examples
        self.single_answer = single_answer

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, index):
        return vectorize(self.examples[index], self.model, self.single_answer)

    def lengths(self):
        return [(len(ex['document']), len(ex['question']))
                for ex in self.examples]


# ------------------------------------------------------------------------------
# PyTorch sampler returning batched of sorted lengths (by doc and question).
# ------------------------------------------------------------------------------


class SortedBatchSampler(Sampler):

    def __init__(self, lengths, batch_size, shuffle=True):
        self.lengths = lengths
        self.batch_size = batch_size
        self.shuffle = shuffle

    def __iter__(self):
        lengths = np.array(
            [(-l[0], -l[1], np.random.random()) for l in self.lengths],
            dtype=[('l1', np.int_), ('l2', np.int_), ('rand', np.float_)]
        )
        indices = np.argsort(lengths, order=('l1', 'l2', 'rand'))
        batches = [indices[i:i + self.batch_size]
                   for i in range(0, len(indices), self.batch_size)]
        if self.shuffle:
            np.random.shuffle(batches)
        return iter([i for batch in batches for i in batch])

    def __len__(self):
        return len(self.lengths)