Spaces:
Build error
Build error
File size: 8,494 Bytes
e62781a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
#!/usr/bin/env python3
# Copyright 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""DrQA reader utilities."""
import json
import time
import logging
import string
import regex as re
from collections import Counter
from .data import Dictionary
logger = logging.getLogger(__name__)
# ------------------------------------------------------------------------------
# Data loading
# ------------------------------------------------------------------------------
def load_data(args, filename, skip_no_answer=False):
"""Load examples from preprocessed file.
One example per line, JSON encoded.
"""
# Load JSON lines
with open(filename) as f:
examples = [json.loads(line) for line in f]
# Make case insensitive?
if args.uncased_question or args.uncased_doc:
for ex in examples:
if args.uncased_question:
ex['question'] = [w.lower() for w in ex['question']]
if args.uncased_doc:
ex['document'] = [w.lower() for w in ex['document']]
# Skip unparsed (start/end) examples
if skip_no_answer:
examples = [ex for ex in examples if len(ex['answers']) > 0]
return examples
def load_text(filename):
"""Load the paragraphs only of a SQuAD dataset. Store as qid -> text."""
# Load JSON file
with open(filename) as f:
examples = json.load(f)['data']
texts = {}
for article in examples:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
texts[qa['id']] = paragraph['context']
return texts
def load_answers(filename):
"""Load the answers only of a SQuAD dataset. Store as qid -> [answers]."""
# Load JSON file
with open(filename) as f:
examples = json.load(f)['data']
ans = {}
for article in examples:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
ans[qa['id']] = list(map(lambda x: x['text'], qa['answers']))
return ans
# ------------------------------------------------------------------------------
# Dictionary building
# ------------------------------------------------------------------------------
def index_embedding_words(embedding_file):
"""Put all the words in embedding_file into a set."""
words = set()
with open(embedding_file) as f:
for line in f:
w = Dictionary.normalize(line.rstrip().split(' ')[0])
words.add(w)
return words
def load_words(args, examples):
"""Iterate and index all the words in examples (documents + questions)."""
def _insert(iterable):
for w in iterable:
w = Dictionary.normalize(w)
if valid_words and w not in valid_words:
continue
words.add(w)
if args.restrict_vocab and args.embedding_file:
logger.info('Restricting to words in %s' % args.embedding_file)
valid_words = index_embedding_words(args.embedding_file)
logger.info('Num words in set = %d' % len(valid_words))
else:
valid_words = None
words = set()
for ex in examples:
_insert(ex['question'])
_insert(ex['document'])
return words
def build_word_dict(args, examples):
"""Return a dictionary from question and document words in
provided examples.
"""
word_dict = Dictionary()
for w in load_words(args, examples):
word_dict.add(w)
return word_dict
def top_question_words(args, examples, word_dict):
"""Count and return the most common question words in provided examples."""
word_count = Counter()
for ex in examples:
for w in ex['question']:
w = Dictionary.normalize(w)
if w in word_dict:
word_count.update([w])
return word_count.most_common(args.tune_partial)
def build_feature_dict(args, examples):
"""Index features (one hot) from fields in examples and options."""
def _insert(feature):
if feature not in feature_dict:
feature_dict[feature] = len(feature_dict)
feature_dict = {}
# Exact match features
if args.use_in_question:
_insert('in_question')
_insert('in_question_uncased')
if args.use_lemma:
_insert('in_question_lemma')
# Part of speech tag features
if args.use_pos:
for ex in examples:
for w in ex['pos']:
_insert('pos=%s' % w)
# Named entity tag features
if args.use_ner:
for ex in examples:
for w in ex['ner']:
_insert('ner=%s' % w)
# Term frequency feature
if args.use_tf:
_insert('tf')
return feature_dict
# ------------------------------------------------------------------------------
# Evaluation. Follows official evalutation script for v1.1 of the SQuAD dataset.
# ------------------------------------------------------------------------------
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
"""Compute the geometric mean of precision and recall for answer tokens."""
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
"""Check if the prediction is a (soft) exact match with the ground truth."""
return normalize_answer(prediction) == normalize_answer(ground_truth)
def regex_match_score(prediction, pattern):
"""Check if the prediction matches the given regular expression."""
try:
compiled = re.compile(
pattern,
flags=re.IGNORECASE + re.UNICODE + re.MULTILINE
)
except BaseException:
logger.warn('Regular expression failed to compile: %s' % pattern)
return False
return compiled.match(prediction) is not None
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
"""Given a prediction and multiple valid answers, return the score of
the best prediction-answer_n pair given a metric function.
"""
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
# ------------------------------------------------------------------------------
# Utility classes
# ------------------------------------------------------------------------------
class AverageMeter(object):
"""Computes and stores the average and current value."""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Timer(object):
"""Computes elapsed time."""
def __init__(self):
self.running = True
self.total = 0
self.start = time.time()
def reset(self):
self.running = True
self.total = 0
self.start = time.time()
return self
def resume(self):
if not self.running:
self.running = True
self.start = time.time()
return self
def stop(self):
if self.running:
self.running = False
self.total += time.time() - self.start
return self
def time(self):
if self.running:
return self.total + time.time() - self.start
return self.total
|