File size: 4,260 Bytes
e62781a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
# Copyright 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Base tokenizer/tokens classes and utilities."""

import copy


class Tokens(object):
    """A class to represent a list of tokenized text."""
    TEXT = 0
    TEXT_WS = 1
    SPAN = 2
    POS = 3
    LEMMA = 4
    NER = 5

    def __init__(self, data, annotators, opts=None):
        self.data = data
        self.annotators = annotators
        self.opts = opts or {}

    def __len__(self):
        """The number of tokens."""
        return len(self.data)

    def slice(self, i=None, j=None):
        """Return a view of the list of tokens from [i, j)."""
        new_tokens = copy.copy(self)
        new_tokens.data = self.data[i: j]
        return new_tokens

    def untokenize(self):
        """Returns the original text (with whitespace reinserted)."""
        return ''.join([t[self.TEXT_WS] for t in self.data]).strip()

    def words(self, uncased=False):
        """Returns a list of the text of each token

        Args:
            uncased: lower cases text
        """
        if uncased:
            return [t[self.TEXT].lower() for t in self.data]
        else:
            return [t[self.TEXT] for t in self.data]

    def offsets(self):
        """Returns a list of [start, end) character offsets of each token."""
        return [t[self.SPAN] for t in self.data]

    def pos(self):
        """Returns a list of part-of-speech tags of each token.
        Returns None if this annotation was not included.
        """
        if 'pos' not in self.annotators:
            return None
        return [t[self.POS] for t in self.data]

    def lemmas(self):
        """Returns a list of the lemmatized text of each token.
        Returns None if this annotation was not included.
        """
        if 'lemma' not in self.annotators:
            return None
        return [t[self.LEMMA] for t in self.data]

    def entities(self):
        """Returns a list of named-entity-recognition tags of each token.
        Returns None if this annotation was not included.
        """
        if 'ner' not in self.annotators:
            return None
        return [t[self.NER] for t in self.data]

    def ngrams(self, n=1, uncased=False, filter_fn=None, as_strings=True):
        """Returns a list of all ngrams from length 1 to n.

        Args:
            n: upper limit of ngram length
            uncased: lower cases text
            filter_fn: user function that takes in an ngram list and returns
              True or False to keep or not keep the ngram
            as_string: return the ngram as a string vs list
        """
        def _skip(gram):
            if not filter_fn:
                return False
            return filter_fn(gram)

        words = self.words(uncased)
        ngrams = [(s, e + 1)
                  for s in range(len(words))
                  for e in range(s, min(s + n, len(words)))
                  if not _skip(words[s:e + 1])]

        # Concatenate into strings
        if as_strings:
            ngrams = ['{}'.format(' '.join(words[s:e])) for (s, e) in ngrams]

        return ngrams

    def entity_groups(self):
        """Group consecutive entity tokens with the same NER tag."""
        entities = self.entities()
        if not entities:
            return None
        non_ent = self.opts.get('non_ent', 'O')
        groups = []
        idx = 0
        while idx < len(entities):
            ner_tag = entities[idx]
            # Check for entity tag
            if ner_tag != non_ent:
                # Chomp the sequence
                start = idx
                while (idx < len(entities) and entities[idx] == ner_tag):
                    idx += 1
                groups.append((self.slice(start, idx).untokenize(), ner_tag))
            else:
                idx += 1
        return groups


class Tokenizer(object):
    """Base tokenizer class.
    Tokenizers implement tokenize, which should return a Tokens class.
    """
    def tokenize(self, text):
        raise NotImplementedError

    def shutdown(self):
        pass

    def __del__(self):
        self.shutdown()